深度学习500问——Chapter02:机器学习基础(5)
2.14 贝叶斯分类器 2.14.1 图解极大似然估计 极大似然估计的原理,用一张图片来说明,如下图所示: 例:有两个外形完全相同的箱子,1号箱有99只白球,1只黑球;2号箱子有1只白球,99只黑球。在一次实...

深度学习500问——Chapter02:机器学习基础(4)
2.12 决策树 2.12.1 决策树的基本原理 决策树(Decision Tree)是一种分为治之的决策过程。一个困难的预测问题,通过树的分支节点,被划分成两个或多个较为简单的子集,从结构上划分为不同的子问题。将依规则分割数据集的过程不断递归下去(Recursive Partitioning)。随着树的深度不断增加,分支节点的子集越来越小,所需要提的问题数也逐渐简化。当分支节点...

深度学习500问——Chapter02:机器学习基础(3)
2.10 主成分分析(PCA) 2.10.1 主成分分析(PCA)思想总结 1. PCA就是将高维的数据通过线性变换投影到低维空间上去。 2. 投影思想:找出最能够代表原始数据的投影方法。被PCA降掉的那些维度只能是那些噪声或是冗余的数据。 3. 去冗余:去除可以被其他向量代表的线性相关向量,这部分信息量是多余的。 4. 去噪声,去除较小特征值对应的特征向...

深度学习500问——Chapter02:机器学习基础(2)
2.5 代价函数 2.5.1 为什么需要代价函数 1. 为了得到训练逻辑回归模型的参数,需要一个代码函数,通过训练代价函数来得到参数。 2. 用于找到最优解的目的函数。 2.5.2 代价函数作用原理 在回归问题中,通过代价函数来求解最优解,常用的是平方误差代价函数。假设函数图像如图2-4所示,当参数发生变化时,假设函数状态也会随着变化。 ...

深度学习500问——Chapter02:机器学习基础(1)
前言 机器学习起源于上世纪50年代,1959年在IBM工作的Arthur Samuel设计了一个下棋程序,这个程序具有学习的能力,它可以在不断的对弈中提高自己。由此提出了“机器学习”这个概念,它是一个结合了多个学科,如概率论、优化理论、统计等,最终在计算机上实现自我获取新知识,学习改善自己的这样一个研究领域。机器学习是人工智能的一个子集,目前已经发展处许多有用的方法,比如支持向量机,回归...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
机器学习平台 PAI您可能感兴趣
- 机器学习平台 PAI scikit-learn
- 机器学习平台 PAI python
- 机器学习平台 PAI数字识别
- 机器学习平台 PAI实战
- 机器学习平台 PAI numpy
- 机器学习平台 PAI降维
- 机器学习平台 PAI模型
- 机器学习平台 PAI构建
- 机器学习平台 PAI升级
- 机器学习平台 PAIpai
- 机器学习平台 PAI算法
- 机器学习平台 PAIpython
- 机器学习平台 PAI数据
- 机器学习平台 PAI应用
- 机器学习平台 PAI训练
- 机器学习平台 PAI人工智能
- 机器学习平台 PAI入门
- 机器学习平台 PAI方法
- 机器学习平台 PAI深度学习
- 机器学习平台 PAI分类
- 机器学习平台 PAI平台
- 机器学习平台 PAI代码
- 机器学习平台 PAI笔记
- 机器学习平台 PAI学习
- 机器学习平台 PAI特征
- 机器学习平台 PAI实践
- 机器学习平台 PAI决策
- 机器学习平台 PAIai
- 机器学习平台 PAI部署
- 机器学习平台 PAI网络