文章 2023-05-22 来自:开发者社区

深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解

深度学习基础入门篇[9.1]:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解 1.卷积提出背景 在全连接网络[1]中,一张图片上的所有像素点会被展开成一个1维向量输入网络,如 图1 所示,28 x 28的输入数据被展开成为784 x 1 的数据作为输入。 图1 全连接网络图 这样往往会存在如下两个问题: 1. 输入数据的空间信息被丢...

深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
文章 2023-01-18 来自:开发者社区

深度学习入门基础CNN系列——填充(padding)与步幅(stride)

填充(padding)在上图中,输入图片尺寸为$3\times3$,输出图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸变小。卷积输出特征图的尺寸计算方法如下(卷积核的高和宽分别为$k_h和k_w$):$$ H_{out}=H-k_h+1\\ W_{out}=W-k_w+1 $$如果输入尺寸为4,卷积核大小为3时,输出尺寸为$4-3+1....

深度学习入门基础CNN系列——填充(padding)与步幅(stride)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能引擎技术

AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。

+关注