深度学习基础入门篇9.1:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解
深度学习基础入门篇[9.1]:卷积之标准卷积:卷积核/特征图/卷积计算、填充、感受视野、多通道输入输出、卷积优势和应用案例讲解 1.卷积提出背景 在全连接网络[1]中,一张图片上的所有像素点会被展开成一个1维向量输入网络,如 图1 所示,28 x 28的输入数据被展开成为784 x 1 的数据作为输入。 图1 全连接网络图 这样往往会存在如下两个问题: 1. 输入数据的空间信息被丢...

深度学习入门基础CNN系列——填充(padding)与步幅(stride)
填充(padding)在上图中,输入图片尺寸为$3\times3$,输出图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸为$2\times2$,经过一次卷积之后,图片尺寸变小。卷积输出特征图的尺寸计算方法如下(卷积核的高和宽分别为$k_h和k_w$):$$ H_{out}=H-k_h+1\\ W_{out}=W-k_w+1 $$如果输入尺寸为4,卷积核大小为3时,输出尺寸为$4-3+1....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
深度学习入门相关内容
- 深度学习入门构建网络
- 深度学习神经网络入门
- 入门深度学习
- 深度学习入门概述
- 深度学习入门实践
- 深度学习入门案例
- 深度学习入门图像
- 深度学习入门卷积
- 深度学习入门cnn
- 深度学习入门分类
- 深度学习入门反向传播
- 深度学习卷积入门
- 深度学习入门场景
- keras深度学习入门
- 深度学习入门感知机
- 深度学习入门keras
- 深度学习入门概念
- 入门人工智能深度学习
- 深度学习入门numpy
- 深度学习入门学习
- 深度学习入门集合
- 深度学习入门序列
- 深度学习入门pytorch
- 深度学习入门笔记
- 深度学习入门数字识别
- 深度学习入门笔记手写数字识别
- 深度学习入门实例
- 深度学习入门rnn
- 深度学习入门计算
- 深度学习入门卷积计算
深度学习更多入门相关
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注