线性回归 梯度下降算法大全与基于Python的底层代码实现
梯度下降是一种常用的优化算法,它通过不断迭代来最小化一个损失函数。根据不同的损失函数和迭代方式,梯度下降可以被分为批量梯度下降(Batch Gradient Descent,BGD)、随机梯度下降(Stochastic Gradient Descent,SGD)、小批量梯度下降(Mini-batch Gradient Descent)、共轭梯度法(Conjugate Gradient,CG)等。....
线性回归 梯度下降原理与基于Python的底层代码实现
1 梯度下降算法原理梯度下降是一种常用的优化算法,可以用来求解许包括线性回归在内的许多机器学习中的问题。前面讲解了直接使用公式求解θ \thetaθ (最小二乘法的求解推导与基于Python的底层代码实现),但是对于复杂的函数来说,可能较难求出对应的公式,因此需要使用梯度下降。假设我们要求解的线性回归公式是:其中 y 是因变量,β i \beta_iβ i 是回归系数,x i x_i....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。