深度学习优化算法入门:二、动量、RMSProp、Adam
编者按:DRDO研究人员Ayoosh Kathuria深入浅出地介绍了牛顿法、动量法、RMSProp、Adam优化算法。 本系列的上一篇文章介绍了随机梯度下降,以及如何应对陷入局部极小值或鞍点的问题。在这篇文章中,我们将查看另一个困扰神经网络训练的问题,病态曲率。 局部极小值和鞍点会使训练停滞,而病态曲率则会减慢训练速度,以至于机器学习从业者可能会觉得搜索收敛到了一个次优极小值。让我们深入了...
深度学习优化入门:Momentum、RMSProp 和 Adam
虽然局部极小值和鞍点会阻碍我们的训练,但病态曲率会减慢训练的速度,以至于从事机器学习的人可能会认为搜索已经收敛到一个次优的极小值。让我们深入了解什么是病态曲率。 病态曲率 考虑以下损失曲线图。 如你所知,我们在进入一个以蓝色为标志的像沟一样的区域之前是随机的。这些颜色实际上代表了在特定点上的损失函数的值,红色代表最高的值,蓝色代表最低的值。 我们想要下降到最低点,因此,需要穿过峡谷。这个区域...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
深度学习入门相关内容
- 深度学习入门构建网络
- 深度学习神经网络入门
- 入门深度学习
- 深度学习入门概述
- 深度学习入门实践
- 深度学习入门案例
- 深度学习入门图像
- 深度学习入门卷积
- 深度学习入门cnn
- 深度学习入门分类
- 深度学习入门反向传播
- 深度学习卷积入门
- 深度学习入门场景
- keras深度学习入门
- 深度学习入门感知机
- 深度学习入门keras
- 深度学习入门概念
- 入门人工智能深度学习
- 深度学习入门numpy
- 深度学习入门学习
- 深度学习入门集合
- 深度学习入门序列
- 深度学习入门pytorch
- 深度学习入门笔记
- 深度学习入门数字识别
- 深度学习入门笔记手写数字识别
- 深度学习入门实例
- 深度学习入门rnn
- 深度学习入门计算
- 深度学习入门卷积计算
深度学习更多入门相关
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注