R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
在本文中,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)进行深度学习。本文的目的是为了让大家亲身体验并熟悉培训课程中的神经网络部分。 1 软件包的下载和安装 在这个例子的笔记本中,需要keras R包。由于它有许多需要下载和安装的依赖包,因此需要几分钟的时间才能完成。请耐心等待! 1.1 下载 keras 我们可以通过CRAN调用install...

基于Pytorch深度学习的脑肿瘤分类识别
实验背景 脑肿瘤是一种严重的疾病,对患者的生命和健康造成了威胁。在脑肿瘤的治疗过程中,准确地识别和分类不同类型的脑肿瘤对于制定个性化的治疗方案和预测患者的病情发展非常重要。 传统的脑肿瘤分类方法通常依赖于医学专家对影像学图像的视觉解读和分析,但这种方法受限于主观性、经验依赖性和人力成本较高....

基于tensorflow深度学习的猫狗分类识别
实验背景 近年来,深度学习在计算机视觉领域取得了巨大的成功,尤其是在图像分类任务上。图像分类是计算机视觉领域的基本问题之一,而猫狗分类作为图像分类中的经典问题,吸引了广泛的研究兴趣。猫狗分类问题具有很高的实际应用价值。在现实世界中,人们经常需要对动物进行分类,如在宠物识别、动物行为分析和动物保护等领域。传统的图像分类方法通常需要手工设计特征提....

【MATLAB第49期】基于MATLAB的深度学习ResNet-18网络不平衡图像数据分类识别模型
MATLAB第49期】基于MATLAB的深度学习ResNet-18网络不平衡图像数据分类识别模型一、基本介绍这篇文章展示了如何使用不平衡训练数据集对图像进行分类,其中每个类的图像数量在类之间不同。两种最流行的解决方案是down-sampling降采样和over-sampling过采样。在降采样中,每个类别的图像数量减少到所有类别中的最小图像数量。降采样的实现很容易:只需使用splitEachLa....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注