机器学习算法的基本概念、分类和评价标准,以及一些常用的机器学习算法的原理和特点
机器学习是一门研究如何让计算机从数据中学习和推理的科学。机器学习算法是实现机器学习的具体方法,它们可以根据不同的目标、数据类型和应用场景进行分类和比较。本文将介绍机器学习算法的基本概念、分类和评价标准,以及一些常用的机器学习算法的原理和特点。 机器学习算法的基本概念 机器学习算法可以看作是一种从输入到输出的映射函数,它可以根据给定的数据集(训练集)来调整自身的参数,使得输出能够尽可能地符...

什么是索引重建的导数原理_OpenSearch-行业算法版_智能开放搜索 OpenSearch(Open Search)
不同操作触发的索引重建,根据用户配置的数据源的不同,其导入数据的来源以及继承老版本数据的方式也大有区别,为防止用户因误操作导致的部分数据无法同步引起的线上问题,在此进行详细说明。说明触发索引重建的操作:手动/定时索引重建、手动/定时清理文档、线下变更。触发索引重建的操作行业算法版数据源:表示在Ope...
17 机器学习 - 决策树分类算法原理
1. 概述决策树(decision tree)——是一种被广泛使用的分类算法。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置在实际应用中,对于探测式的知识发现,决策树更加适用2. 算法思想通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:女儿:多大年纪了?母亲:26。女儿:长的帅不帅?母亲:挺帅的。女儿:收入高不?母亲:....

14 机器学习 - CF协同过滤推荐算法原理
1 概述什么是协同过滤 (Collaborative Filtering, 简称 CF)?首先想一个简单的问题,如果你现在想看个电影,但你不知道具体看哪部,你会怎么做?大部分的人会问问周围的朋友,看看最近有什么好看的电影推荐,而我们一般更倾向于从口味比较类似的朋友那里得到推荐。这就是协同过滤的核心思想。协同过滤算法又分为基于用户的协同过滤算法和基于物品的协同过滤算法2 案例需求如下数据是各用户对....

10 机器学习 - KNN分类算法原理
1 概述K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。(机器学习,算法本身不是最难的,最难的是:1、数学建模:把业务中的特性抽象成向量的过程;2、选取适合模型的数据样本。这两个事都不是简单的事。算法反而是比较简单的事。)KNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。本质上,KNN算法就是用距离来衡量样本之间的相似度2 算法图示....

08 机器学习 - Kmeans聚类算法原理
1.概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 算法图示假设我们的n个样本点分布在图中所示的二维空间。从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示:我们的目的是为这些数....

机器学习集成学习进阶Xgboost算法原理
1 最优模型的构建方法XGBoost(Extreme Gradient Boosting)全名叫极端梯度提升树,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost。XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,本节将较详细的介绍XGBoost的算法原理。我们在前面已经知道,构建最优模型的一般方法是最小化训练数据的损失函数。我们用字母 L表....

OpenSearch同步数据的原理是什么_OpenSearch-行业算法版_智能开放搜索 OpenSearch(Open Search)
实时同步(增量数据)由上图所示,增量数据一共有两部分(DB更新的和API推送的),新数据从源到opensearch一共有3个步骤:1.用户更新DB(通过DTS服务订阅数据库的binlog实现)或者调用API接口将数据推送到OpenSearch离线,此时主+辅表有1500tps的限制2. 当数据抵达离...
机器学习算法之——卷积神经网络(CNN)原理讲解
01从神经网络到卷积神经网络我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。定义简而言之,卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网....

机器学习算法之——K最近邻(k-Nearest Neighbor,KNN)分类算法原理讲解
k-最近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。01基于实例的学习已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。基于实例的方法可以为....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
算法更多原理相关
智能引擎技术
AI Online Serving,阿里巴巴集团搜推广算法与工程技术的大本营,大数据深度学习时代的创新主场。
+关注