文章 2024-05-31 来自:开发者社区

【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码)

YOLO目标检测创新改进与实战案例专栏 专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例 专栏链接: YOLO基础解析+创新改进+实战案例 摘要 先前的大量研究表明,注意力机制在提高深度卷积神经网络(CNN)的性能方...

文章 2023-12-19 来自:开发者社区

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、数据集简介我们将使用Cora数据集。该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论每篇论文都由一个1433维的词向量表示,所以,每个样本点具有1433个特征。词向量的每个元素都对应一个词,且该元素只有0或1两....

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
文章 2023-05-22 来自:开发者社区

新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(二)

5 Rednet网络搭建作者在ResNet的主干和主干的所有瓶颈位置上使用Involution替换掉了卷积,但保留了所有的卷积用于通道映射和融合。这些精心重新设计的实体联合起来,形成了一种新的高效Backbone网络,称为RedNet。pytorch实现如下:from torch.autograd import Function import torch from torch.nn.module....

新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(二)
文章 2023-05-22 来自:开发者社区

新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(一)

1 简介卷积一直是构建现代神经网络架构的核心组件,同时由于卷积的应用也引发了视觉深度学习的浪潮。而作者在这项工作中重新思考了视觉任务中标准卷积的内在原理,特别是与空间无关和特定于通道的方法。取而代之的是,本文通过反转前述的卷积设计原理(称为卷积)提出了一种用于深度神经网络的新颖原子操作。此外,本文还揭开了最近流行的Self-Attention运算的神秘面纱,并将其作为复杂化的实例插入到本文所提的....

新型卷积 | 涨点神器!利用Involution可构建新一代神经网络!(文末获取论文与源码)(一)
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类

1 案例说明(图卷积神经网络)CORA数据集里面含有每一篇论文的关键词以及分类信息,同时还有论文间互相引用的信息。搭建AI模型,对数据集中的论文信息进行分析,根据已有论文的分类特征,从而预测出未知分类的论文类别。1.1 使用图卷积神经网络的特点使用图神经网络来实现分类。与深度学习模型的不同之处在于,图神经网通会利用途文本身特征和论文间的关系特征进行处理,仅需要少量样本即可达到很好的效果。cora....

【Pytorch神经网络实战案例】20 基于Cora数据集实现图卷积神经网络论文分类
文章 2022-02-17 来自:开发者社区

深度全解卷积神经网络(附论文)

第一章 引言 一、本文动机 过去几年,计算机视觉研究主要集中在卷积神经网络上(通常简称为 ConvNet 或 CNN),在大量诸如分类和回归任务上已经实现了目前为止最佳的表现。尽管这些方法的历史可以追溯到多年前,但相对而言,对这些方法的理论理解及对结果的解释还比较浅薄。 实际上,计算机视觉领域的很多成果都把 CNN 当作了一种黑箱,这种方式虽然有效的,但对结果的解释却是模糊不清的,这也无法满足科....

文章 2022-02-16 来自:开发者社区

全解卷积神经网络,并分享9篇必读论文

Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力的创新结果。随着Alex Krizhevsky开始使用神经网络,将分类错误率由26%降到15%并赢得2012年度ImageNet竞赛(相当于机器视觉界的奥林匹克)时,它就开始声名大噪了。从那时起,一票公司开始在它们的核心服务中使用深度学习技术。例如Faceb....

文章 2021-10-27 来自:开发者社区

DL之CNN:关于CNN(卷积神经网络)经典论文原文(1950~2018)简介总结框架结构图(非常有价值)之持续更新(吐血整理)

相关文章本文章的总结构的细节文章请看另一个博文视频链接:听着歌曲《成都》三分钟看遍主流的深度神经网络的发展框架(1950~2018)文章链接:DL:听着歌曲《成都》三分钟看遍主流的深度学习的神经网络的发展框架(1950~2018)DL之CNN:关于CNN(卷积神经网络)经典论文原文(1950~2018)简介总结框架结构图(非常有价值)之持续更新(吐血整理)DL之CNN(paper):关于CNN(....

DL之CNN:关于CNN(卷积神经网络)经典论文原文(1950~2018)简介总结框架结构图(非常有价值)之持续更新(吐血整理)
文章 2018-05-23 来自:开发者社区

轻量化卷积神经网络MobileNet论文详解(V1&V2)

本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,其同样是一个轻量化卷积神经网络。目标主要是在提升现有算法的精度的同时也提升速度,以便加速深度网络在移动端的应用。  

文章 2018-03-19 来自:开发者社区

理解卷积神经网络的利器:9篇重要的深度学习论文(上)

        手把手教你理解卷积神经网络(一)         手把手教你理解卷积神经网络(二) 本文将介绍过去五年内发表的一些重要论文,并探讨其重要性。论文1—5涉及通用网络架构的发展,论文6—9则是其他网络架构的论文。点击原文即可查看更详细的内容。 1.AlexNet(2012) AlexNe...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。