阿里云文档 2024-05-23

在推荐系统中应用FeatureStore管理特征

本文以FeatureStore的特征表为例,为您介绍FeatureStore从创建与注册到最终上线的过程,帮助您了解如何从零开始搭建并上线一套完整的推荐系统。

阿里云文档 2024-02-27

什么是线性模型特征重要性算法组件

线性模型特征重要性组件用于计算线性模型的特征重要性,包括线性回归和二分类逻辑回归,支持稀疏和稠密数据格式。本文为您介绍该组件的配置方法。

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
194 人已学 |
免费

PAI平台学习路线:机器学习入门到应用

52 课时 |
2433 人已学 |
免费

场景实践 - 机器学习PAI实现精细化营销

7 课时 |
197 人已学 |
免费
开发者课程背景图
阿里云文档 2024-01-10

使用pai designer分箱组件离散化连续特征

特征离散是将连续的数据进行分段,使其变为多个离散化区间。针对该场景,PAI推出了分箱组件和数据转换模块组件。首先使用分箱组件将连续特征离散化,再使用数据转换模块将原始数据从连续值转换为离散值。本文为您介绍如何使用Designer组件进行连续特征离散化。

阿里云文档 2024-01-05

使用特征工程提取特征数据

通过推荐算法定制生成的特征工程,对原始数据集(包括用户表、物料表和行为表等)进行处理,并生成新的特征表,以供后续的召回和排序使用。前提条件已开通PAI(Designer),并创建默认工作空间。具体操作,请参见开通PAI并创建默认工作空间。开通PAI并创建默认工作空间已为工作空间绑定MaxComput...

文章 2022-09-04 来自:开发者社区

机器学习:数据特征预处理归一化和标准化

特征预处理通过特定的统计方法(数学方法)将数据转换成算法要求的数据数值型数据: -标准缩放 - 归一化 - 标准化 - 缺失值 类别行数据: - one-hot编码 时间型数据: - 时间的切分 1、归一化将原始数据映射到一个区间[0,1]特征同等重要&#...

机器学习:数据特征预处理归一化和标准化
阿里云文档 2020-10-21

什么是特征重要性过滤组件

特征重要性过滤组件为线性特征重要性、GBDT特征重要性和随机森林特征重要性等组件提供过滤功能,支持过滤TopN的特征。

文章 2018-09-25 来自:开发者社区

机器学习笔记——特征标准化

数据标准化是在特征处理环节必不可少的重要步骤。 数据标准化是为了消除不同指标量纲的影响,方便指标之间的可比性,量纲差异会影响某些模型中距离计算的结果。 常见标准化方法主要有归一化、正态化。 数据归一化也即0-1标准化,又称最大值-最小值标准化,核心要义是将原始指标缩放到0~1之间的区间内。相当于对原变量做了一次线性变化。 其公式为 EX = (x- min)/(max - min) 另一种常用的....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

阿里云机器学习平台PAI

阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。

+关注