文章 2024-04-29 来自:开发者社区

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列

全文链接:http://tecdat.cn/?p=32265 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求(点击文末“阅读原文”获取完整代码数据)。 但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值、 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在...

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
文章 2024-04-26 来自:开发者社区

R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

全文链接:http://tecdat.cn/?p=30597 最近我们被要求解决时间序列异常检验的问题。有客户在使用大量的时间序列。这些时间序列基本上是每10分钟进行一次的网络测量,其中一些是周期性的(即带宽),而另一些则不是(即路由流量)(点击文末“阅读原文”获取完整代码数据)。 他想要一个简单的算法来进行在线“异常值检测”。基本上,想将每个时间序列的整个历...

R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值
文章 2024-04-26 来自:开发者社区

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法

全文链接:http://tecdat.cn/?p=30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例,具有一定的参考价值,需要的朋友可以参考一下(点击文末“阅读原文”获取完整代码数据)。 ...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法
文章 2024-04-26 来自:开发者社区

R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口

全文下载链接 :http://tecdat.cn/?p=27493 本文应用R软件技术,分别利用logistic模型、ARFMA模型、ARIMA模型、时间序列模型对从2016到2100年的世界人口进行预测。 作者将1950年到2015年的历史数据作为训练集来预测85年的数据。模型稳定性经过修正后较好,故具有一定的参考价值。 引言 随...

R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口
文章 2024-04-24 来自:开发者社区

数据分享|R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口

原文链接 :http://tecdat.cn/?p=27493  本文应用R软件技术,分别利用logistic模型、ARFMA模型、ARIMA模型、时间序列模型对从2016到2100年的世界人口进行预测。作者将1950年到2015年的历史数据(查看文末了解数据获取方式)作为训练集来预测85年的数据。模型稳定性经过修正后较好,故具有一定的参考价值。 引...

数据分享|R语言用logistic逻辑回归和AFRIMA、ARIMA时间序列模型预测世界人口
文章 2024-04-17 来自:开发者社区

R语言用AR,MA,ARIMA 模型进行时间序列预测

本文讨论用ARIMA模型进行预测。考虑一些简单的平稳的AR(1)模拟时间序列 > for(t in 2:n) X\[t\]=phi*X\[t-1\]+E\[t\] > plot(X,type="l") ...

R语言用AR,MA,ARIMA 模型进行时间序列预测
文章 2024-04-17 来自:开发者社区

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。然后,在样本中估计模型,并使用一些误差指标来评估其预测性能。 如果这样的程序只做一次,那么这被称为 "固定原点 "评估。然而,时间序列可能包含离群值,一个差的模型可能比更合适的模型表现得更好。为了加强对模型的评估,我们使用了一种叫做 "滚动原点 "...

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
文章 2024-04-17 来自:开发者社区

R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据

标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测。该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去(随机)影响的值。ARIMAX模型是ARIMA模型的一个扩展版本。它还包括其他独立(预测)变量。该模型也被称为向量ARIMA或动态回归模型。 ARIMAX模型类似于多变量回归模型,但允许利用回归残差中可能存在的自相关来提高预测的准确性。 本文提...

R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
文章 2024-04-17 来自:开发者社区

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列

至少有两种非平稳时间序列:具有趋势的时间序列和具有单位根的时间序列(称为单整时间序列)。单位根检验不能用来评估时间序列是否平稳。它们只能检测单整时间序列。季节性单位根也是如此。 这里考虑月平均温度数据。 > mon=read.table("temp.txt") > ...

R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
文章 2024-04-17 来自:开发者社区

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

链接 视频: 在Python和R语言中建立EWMA,ARIMA模型预测时间序列 概述 学习创建时间序列预测的步骤 关注Dickey-Fuller检验和ARIMA(自回归移动平均)模型 从理论上学习这些概念以及它们在python中的实现 介绍 时间序列(从现在起称为TS)被认为是数据科学领...

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。