文章 2024-04-17 来自:开发者社区

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

原文链接:http://tecdat.cn/?p=18860 简介 时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值。时序分析有两种方法,即频域和时域。前者主要基于傅立叶变换,而后者则研究序列的自相关,并且使用Box-Jenkins和ARCH / GARCH方法进行序列的预测。 本文将提供使用时域方法对R环...

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
文章 2024-04-17 来自:开发者社区

R语言中的copula GARCH模型拟合时间序列并模拟分析

在这个文章中,我们演示了copula GARCH方法(一般情况下)。 1 模拟数据 首先,我们模拟一下创新分布。我们选择了一个小的样本量。理想情况下,样本量应该更大,更容易发现GARCH效应。 ## 模拟创新分布 d <- 2 # 维度 tau <- 0.5...

R语言中的copula GARCH模型拟合时间序列并模拟分析
文章 2024-04-17 来自:开发者社区

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。然后,在样本中估计模型,并使用一些误差指标来评估其预测性能。 如果这样的程序只做一次,那么这被称为 "固定原点 "评估。然而,时间序列可能包含离群值,一个差的模型可能比更合适的模型表现得更好。为了加强对模型的评估,我们使用了一种叫做 "滚动原点 "...

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
文章 2024-04-17 来自:开发者社区

R语言时间序列GARCH模型分析股市波动率

在这篇文章中,我们将学习一种在价格序列中建立波动性模型的标准方法,即广义自回归条件异方差(GARCH)模型。 价格波动的 GARCH 模型的思想是利用误差结构的近期实现来预测误差结构的未来实现。更简单地说,我们经常看到在高波动性或低波动性时期的聚类,因此我们可以利用近期的波动性来预测近期未来的波动性。 我们将使用SPY价格来说明波动率的模型。下面的图显示了SPY收益率。 ...

R语言时间序列GARCH模型分析股市波动率
文章 2024-04-17 来自:开发者社区

R语言时间序列平稳性几种单位根检验(ADF,KPSS,PP)及比较分析

时间序列模型根据研究对象是否随机分为确定性模型和随机性模型两大类。 随机时间序列模型即是指仅用它的过去值及随机扰动项所建立起来的模型,建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构。 ...

R语言时间序列平稳性几种单位根检验(ADF,KPSS,PP)及比较分析
文章 2024-04-17 来自:开发者社区

R语言线性回归和时间序列分析北京房价影响因素可视化案例

目的 房价有关的数据可能反映了中国近年来的变化: 人们得到更多的资源(薪水),期望有更好的房子 人口众多 独生子女政策:如何影响房子的几何结构?更多的卧室,更多的空间 我核心的想法是预测房价。然而,我不打算使用任何arima模型;相反,我将使用数据的特性逐年拟合回归。 结构如下: 数据准备:将数值特征转...

R语言线性回归和时间序列分析北京房价影响因素可视化案例
文章 2024-04-17 来自:开发者社区

R语言ARIMA,SARIMA预测道路交通流量时间序列分析:季节性、周期性

本文从实践角度讨论了季节性单位根。我们考虑一些时间序列 ),例如道路上的交通流量, > plot(T,X,type="l") ...

R语言ARIMA,SARIMA预测道路交通流量时间序列分析:季节性、周期性
文章 2024-04-17 来自:开发者社区

R语言从经济时间序列中用HP滤波器,小波滤波和经验模态分解等提取周期性成分分析

经济时间序列的分析通常需要提取其周期性成分。这篇文章介绍了一些方法,可用于将时间序列分解为它们的不同部分。它基于《宏观经济学手册》中Stock和Watson(1999)关于商业周期的章节,但也介绍了一些较新的方法,例如汉密尔顿(2018)替代HP滤波器,小波滤波和经验模态分解。 数据 我使用从1970Q1到2016Q4的美国对数实际GDP的季度数据来说明不同的方法。时间序列是通过...

R语言从经济时间序列中用HP滤波器,小波滤波和经验模态分解等提取周期性成分分析
文章 2024-04-17 来自:开发者社区

R语言ARIMA集成模型预测时间序列分析

本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。 我们使用以下数据 k=620 n=nrow(elec) futu=(k+1):n y=electricite$L...

R语言ARIMA集成模型预测时间序列分析
文章 2024-04-16 来自:开发者社区

R语言时间序列数据指数平滑法分析交互式动态可视化

R语言提供了丰富的功能,可用于绘制R中的时间序列数据。   包括: 自动绘制  xts  时间序列对象(或任何可转换为xts的对象)的图。 高度可配置的轴和系列显示(包括可选的第二个Y轴)。 丰富的交互式功能,包括  缩放/平移  和系列/点  高亮显示。 ...

R语言时间序列数据指数平滑法分析交互式动态可视化

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。