文章 2024-04-22 来自:开发者社区

R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-2

R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1 https://developer.aliyun.com/article/1488197 模型预测 通常您会希望使用估计模型来随后预测条件方差。用于此目的的函数是 forecast 函数。该应用程序相当简单: ...

R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-2
文章 2024-04-22 来自:开发者社区

R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1

原文链接:http://tecdat.cn/?p=25957  介绍 当您处理金融时间序列时,我们通常可以获得相对高频的观察结果。例如,每天进行观察是很常见的。事实上,现在可以获得每小时、分钟、秒甚至毫秒的观测值。 使用的包 有许多软件包可以使我们能够估计波动率模型。我们还将使用该 quantmod 软件包,因为它可以让我们轻松访问一些标准财务数据。 ...

R语言单变量和多变量(多元)动态条件相关系数DCC-GARCH模型分析股票收益率金融时间序列数据波动率-1
文章 2024-04-18 来自:开发者社区

R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化

原文链接:http://tecdat.cn/?p=25770  在本文中,我们展示了 copula GARCH 方法拟合模拟数据和股票数据并进行可视化。 r还提供了一个特殊情况(具有正态或学生 t残差)。 一、如何在R中对股票x和y的收益率拟合copula模型 数据集 为了这个例子的目的,我使用了一个简单的股票x和y的收益率数据集(x.txt和y.tx...

R语言ARMA GARCH COPULA模型拟合股票收益率时间序列和模拟可视化
文章 2024-04-18 来自:开发者社区

R语言多变量广义正交GARCH(GO-GARCH)模型对股市高维波动率时间序列拟合预测

在多变量波动率预测中,我们有时会看到对少数主成分驱动的协方差矩阵建模,而不是完整的股票。使用这种因子波动率模型的优势是很多的。 首先,你不需要对每个股票单独建模,你可以处理流动性相当弱的股票。第二,因子波动率模型在计算成本低。第三,与指数加权模型相比,持久性参数(通常表示为 ...

R语言多变量广义正交GARCH(GO-GARCH)模型对股市高维波动率时间序列拟合预测
文章 2024-04-17 来自:开发者社区

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据

特别是在经济学/计量经济学中,建模者不相信他们的模型能反映现实。比如:收益率曲线并不遵循三因素的Nelson-Siegel模型,股票与其相关因素之间的关系并不是线性的,波动率也不遵循Garch(1,1)过程,或者Garch(?,?)。我们只是试图为我们看到的现象找到一个合适的描述。 模型的发展往往不是由我们的理解决定的,而是由新的数据的到来决定的,这些数据并不适合现有的看法。有些人甚至可...

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
文章 2024-04-17 来自:开发者社区

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列

引言 在本文中,我们将尝试为苹果公司的日收益率寻找一个合适的 GARCH 模型。波动率建模需要两个主要步骤。 指定一个均值方程(例如 ARMA,AR,MA,ARIMA 等)。 建立一个波动率方程(例如 GARCH, ARCH,这些方程是由 Robert Engle 首先开发的)。 要做(1),你需要利用著名的Box-Jenkins方法,它包...

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
文章 2024-04-17 来自:开发者社区

R语言深度学习KERAS循环神经网络(RNN)模型预测多输出变量时间序列

原文链接:http://tecdat.cn/?p=23902 递归神经网络被用来分析序列数据。它在隐藏单元之间建立递归连接,并在学习序列后预测输出。 在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,你也可以对时间序列数据应用同样的方法。我们将使用Keras R接口在R中实现神经网络: 准备数据 定义模型 ...

R语言深度学习KERAS循环神经网络(RNN)模型预测多输出变量时间序列
文章 2024-04-17 来自:开发者社区

R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模

原文链接:http://tecdat.cn/?p=23882  摘要 随机波动率(SV)模型是常用于股票价格建模的一系列模型。在所有的SV模型中,波动率都被看作是一个随机的时间序列。然而,从基本原理和参数布局的角度来看,SV模型之间仍有很大的不同。因此,为一组给定的股票价格数据选择最合适的SV模型对于对股票市场的未来预测非常重要。为了实现这一目标,可以使用留一交叉验证(...

R语言用综合信息准则比较随机波动率(SV)模型对股票价格时间序列建模
文章 2024-04-17 来自:开发者社区

R语言用AR,MA,ARIMA 模型进行时间序列预测

本文讨论用ARIMA模型进行预测。考虑一些简单的平稳的AR(1)模拟时间序列 > for(t in 2:n) X\[t\]=phi*X\[t-1\]+E\[t\] > plot(X,type="l") ...

R语言用AR,MA,ARIMA 模型进行时间序列预测
文章 2024-04-17 来自:开发者社区

R语言深度学习:用keras神经网络回归模型预测时间序列数据

回归数据可以用Keras深度学习API轻松拟合。在本教程中,我们将简要地学习如何通过使用R中的Keras神经网络模型来拟合和预测回归数据。在这里,我们将看到如何创建简单的回归数据,建立模型,训练它,并最终预测输入数据。该教程包括 生成样本数据集 建立模型 训练模型并检查准确性 预测测试数据 源代码列表 我们将从加载R的...

R语言深度学习:用keras神经网络回归模型预测时间序列数据

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。