问答 2022-07-31 来自:开发者社区

机器学习中常用的集成技术策略有哪几种呢?

机器学习中常用的集成技术策略有哪几种呢?

文章 2022-07-07 来自:开发者社区

②机器学习分类算法之XGBoost(集成学习算法)

调参步骤及思想选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min....

②机器学习分类算法之XGBoost(集成学习算法)
文章 2022-07-07 来自:开发者社区

①机器学习分类算法之XGBoost(集成学习算法)

走进XGBoost什么是XGBoost?全称:eXtreme Gradient Boosting作者:陈天奇(华盛顿大学博士)基础:GBDT所属:boosting迭代型、树类算法。适用范围:分类、回归优点:速度快、效果好、能处理大规模数据、支持多种语言、支持自定义损失函数等等。缺点:算法参数过多,调参负责,对原理不清楚的很难使用好XGBoost。不适合处理超高维特征数据。XGBoost是陈天奇等....

①机器学习分类算法之XGBoost(集成学习算法)
文章 2022-07-07 来自:开发者社区

③机器学习分类算法之随机森林(集成学习算法)

min_samples_split优化# min_samples_split优化 scorel = [] for i in range(2,20): RFC = RandomForestClassifier(max_depth=20,n_estimators=51,min_samples_leaf=1,min_samples_split=i, ...

③机器学习分类算法之随机森林(集成学习算法)
文章 2022-07-07 来自:开发者社区

②机器学习分类算法之随机森林(集成学习算法)

如何调参对于随机森林如何调参,这里给出一些好的建议,如果你是网格搜索,而且是那种毫无规则的网格搜索,那么模型跑个三天三夜也未必有结果,此外,你的机器可能没有这么好的配置,根本跑不动!在下图中,我们可以看到这些参数对Random Forest整体模型性能的影响:① 基于泛化误差与模型复杂度的关系来进行调参;② 根据对模型的影响程度,由大到小对参数排序,并确定哪些参数会使模型复杂度减小,哪些会增大;....

②机器学习分类算法之随机森林(集成学习算法)
文章 2022-07-07 来自:开发者社区

①机器学习分类算法之随机森林(集成学习算法)

什么是集成学习?定义:本身并不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务,以达到获得比单个学习器更好的学习效果的一种机器学习方法。高端点的说叫“博彩众长”,庸俗的说叫“三个臭皮匠,顶个诸葛亮”。思路:在对新的实例进行分类的时候,把若干个单个分类器集成起来,通过对多个分类器的分类结果进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。如果把单个分类器比作一个决....

①机器学习分类算法之随机森林(集成学习算法)
文章 2022-05-28 来自:开发者社区

一张图介绍机器学习中的集成学习算法

集成学习算法的三大派系所谓集成学习,顾名思义,就是集成多个基学习器的结果,采用一定的融合机制得到一个更为精准和稳定的结果。这其中,隐藏一个重要条件是:多个基学习器的学习结果要存在差异性,否则如果基学习器结果完全相同则无论用何种融合策略都得不到更好的集成结果。按照对多个基学习器集成策略和融合机制的不同,集成学习主要包含三大派系:bagging,全称即为bootstrap aggregating,主....

一张图介绍机器学习中的集成学习算法
文章 2022-02-18 来自:开发者社区

使用 scikit-learn 玩转机器学习——集成学习

集成学习是结合多个单一估计器的预测结果对给定问题给出预测的一种算法,集成学习相对于单一的估计器来说会有更好的泛化能力和鲁棒性,教科书式的定义的确会让人头昏脑涨,以下我们就来拿小华做作业来举个栗子。小华是个学渣,每次做作业都要抱学霸 A 的大腿,学霸A也不介意让他看作业,暂且不管背后是不是有什么XX交易,反正每次作业被批改后发下来得分还算过得去。但小华并不满足于此,他不是一个一般的学渣,它是一个有....

使用 scikit-learn 玩转机器学习——集成学习
文章 2021-12-22 来自:开发者社区

周志华《机器学习》课后习题(第八章):集成学习

8.3 从网上下载或自己编程实现 AdaBoost,以不剪枝抉策树为基学习器,在西瓜数据集 3.0α 上训练一个 AdaBoost 集成,并与图 8.4进行比较。答:代码在:https://github.com/han1057578619/MachineLearning_Zhouzhihua_ProblemSets/tree/master/ch8--%E9%9B%86%E6%88%90%E5%A....

周志华《机器学习》课后习题(第八章):集成学习
问答 2021-10-22 来自:开发者社区

机器学习的集成算法是什么?

机器学习的集成算法是什么?

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

{"cardStyle":"productCardStyle","productCode":"aliyun","productCardInfo":{"productTitle":"容器化应用的持续集成与部署","productDescription":"在现代软件开发中,高效的持续集成和部署(CI/CD)是确保快速迭代和稳定交付的关键所在。基于阿里云容器服务 Kubernetes 版 ACK 与Jenkins构建持续集成与部署的解决方案,能够为企业提供从代码构建到应用部署的全流程自动化支持,显著提升开发效率和交付质量。","productContentLink":"https://www.aliyun.com/solution/tech-solution/ack-cicd","isDisplayProductIcon":true,"productButton1":{"productButtonText":"方案详情","productButtonLink":"https://www.aliyun.com/solution/tech-solution/ack-cicd"},"productButton2":{"productButtonText":"方案部署","productButtonLink":"https://www.aliyun.com/solution/tech-solution-deploy/2868455.html"},"productButton3":{"productButtonText":"查看更多技术解决方案","productButtonLink":"https://www.aliyun.com/solution/tech-solution/"},"productPromotionInfoBlock":[{"productPromotionGroupingTitle":"解决方案推荐","productPromotionInfoFirstText":"容器化应用的弹性伸缩攻略","productPromotionInfoFirstLink":"https://www.aliyun.com/solution/tech-solution/ack-hpa","productPromotionInfoSecondText":"高效编排与管理容器化应用","productPromotionInfoSecondLink":"https://www.aliyun.com/solution/tech-solution/ack-services"}],"isOfficialLogo":false},"activityCardInfo":{"activityTitle":"","activityDescription":"","cardContentBackgroundMode":"LightMode","activityContentBackgroundImageLink":"","activityCardBottomInfoSelect":"activityPromotionInfoBlock"}}