文章 2024-05-06 来自:开发者社区

Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码

随着大数据时代的来临,深度学习技术在各个领域中得到了广泛的应用。长短期记忆(LSTM)网络作为深度学习领域中的一种重要模型,因其对序列数据的强大处理能力,在自然语言处理、时间序列预测等领域中取得了显著的成果(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
文章 2024-04-30 来自:开发者社区

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

全文链接:https://tecdat.cn/?p=33885 本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样(点击文末“阅读原文”获取完整代码数据)。 定义模型以及从条件后验中抽取样本的函数的代码也在Python脚本中提供。 ...

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享
文章 2024-04-30 来自:开发者社区

Python随机波动模型Stochastic volatility,SV随机变分推断SVI分析标普500指数时间数据波动性可视化

全文链接:https://tecdat.cn/?p=33809 随机波动模型(Stochastic volatility models)经常被客户用来对股票价格随时间的变动性进行建模(点击文末“阅读原文”获取完整代码数据)。 波动性(volatility)是随时间的对数收益的标准差。与假设波动性恒定不变不同,随机波动模型具有隐变量参数,可以在每个时刻对波动性进...

Python随机波动模型Stochastic volatility,SV随机变分推断SVI分析标普500指数时间数据波动性可视化
文章 2024-04-28 来自:开发者社区

python用回归、arima、随机森林、GARCH模型分析国债期货波动性、收益率、价格预测

全文链接:http://tecdat.cn/?p=31123 分析师:Yihan Mao 本文为客户提供咨询,让个人购买人员了解美国国债期货的特性,以便于进行个人投资及管理。 任务/目标 由于国债期货的方便,可以快速交易,所以无论是用来投机还是用来对冲风险都有很好的作用效果。我们提取美国国债期货的数据,进行波动性,收益率上的分析,并进行价格预测...

python用回归、arima、随机森林、GARCH模型分析国债期货波动性、收益率、价格预测
文章 2024-04-24 来自:开发者社区

PYTHON 用几何布朗运动模型和蒙特卡罗MONTE CARLO随机过程模拟股票价格可视化分析耐克NKE股价时间序列数据

原文链接:http://tecdat.cn/?p=27099  介绍 金融资产/证券已使用多种技术进行建模。该项目的主要目标是使用几何布朗运动模型和蒙特卡罗模拟来模拟股票价格。该模型基于受乘性噪声影响的随机(与确定性相反)变量。 该项目分两部分完成: ...

PYTHON 用几何布朗运动模型和蒙特卡罗MONTE CARLO随机过程模拟股票价格可视化分析耐克NKE股价时间序列数据
文章 2024-04-23 来自:开发者社区

数据分享|PYTHON用PYSTAN贝叶斯IRT模型拟合RASCH模型分析学生考试问题数据

原文链接:http://tecdat.cn/?p=26769 由于某大学学生人数过多,助教不足,因此有必要对期中考试给每个学生的题目数量施加五道题的限制。所有必须使用的问题必须来自大约 400 个预先批准的问题的测试库。50% 的问题可以在期中使用。这项数据驱动研究的目标是找到应该从考试生成算法中排除的问题,以提供班级中最有意义的学生排名。 数据分析 ...

数据分享|PYTHON用PYSTAN贝叶斯IRT模型拟合RASCH模型分析学生考试问题数据
文章 2024-04-23 来自:开发者社区

PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

原文链接:http://tecdat.cn/?p=22617 本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果。它应用了Hamilton(1989)的滤波器和Kim(1994)的平滑器。 %matplotl...

PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(下)

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中):https://developer.aliyun.com/article/1490525 我们绘制模型残差。 SPY最佳模型残...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(下)
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中)

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上):https://developer.aliyun.com/article/1490523 AR(1) 模型,ALPHA = 0.6 正如预期的那样,我们模拟的 AR(1) 模型的分布是正常的。滞后值之间存...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中)
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上)

原文链接:http://tecdat.cn/?p=24092 前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,_并对_未来做出更好、更有利的预测。示例应用包括预测未来资产收...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像