文章 2024-08-16 来自:开发者社区

R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证

在R语言中,进行房价预测分析的方法多样,其中包括逻辑回归、广义相加模型(GAM)、线性判别分析(LDA)、最近邻(KNN)和主成分分析(PCA)等。这些模型和技术可以有效地用于分析和预测房价,并且可以通过交叉验证来评估模型性能。下面分别对这些方...

文章 2024-05-06 来自:开发者社区

R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享

本研究旨在帮助客户利用房价数据集(查看文末了解数据免费获取方式)进行数据分析,该数据集包含82个变量和2930个数据点。研究目标是通过分类算法将房价分为两个类别。在数据预处理阶段,排除了Order、PID和SalesPrice等变量,对数据进行整合和转换以适应非线性关系。随后运用逻辑回归、GAM、LDA和KNN等算法进行建模和评估(点击文末“阅读原文”获取完整代码数据)。 相关...

R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
文章 2024-05-06 来自:开发者社区

R语言逻辑回归模型的移动通信客户流失预测与分析

通过对某移动通信公司客户的流失数据分析,了解客户流失规律,建立流失预警系统,为客户关系管理服务(点击文末“阅读原文”获取完整代码数据)。 相关视频 数据介绍 某年度随机抽取的 1000 个移动...

R语言逻辑回归模型的移动通信客户流失预测与分析
文章 2024-05-06 来自:开发者社区

R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化

信用风险建模是金融领域的重要课题,通过建立合理的信用风险模型,可以帮助金融机构更好地评估借款人的信用状况,从而有效降低信贷风险(点击文末“阅读原文”获取完整代码数据)。 相关视频 本文使用了 R 语言...

R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
文章 2024-04-30 来自:开发者社区

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上):https://developer.aliyun.com/article/1498787 还有 clam_res <- simu...

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
文章 2024-04-30 来自:开发者社区

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)

全文链接:https://tecdat.cn/?p=33781 我们使用广义线性模型(Generalized Linear Models,简称GLM)来研究客户的非正态数据,并探索非线性关系(点击文末“阅读原文”获取完整代码数据)。 GLM是一种灵活的统计模型,适用于各种数据类型和分布,包括二项分布、泊松分布和负二项分布等非正态分布。通过GLM,我们可以对非正...

R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(上)
文章 2024-04-30 来自:开发者社区

R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索

全文链接:https://tecdat.cn/?p=33659 行为风险因素监测系统(BRFSS)是一项年度电话调查。BRFSS旨在确定成年人口中的风险因素并报告新兴趋势(点击文末“阅读原文”获取完整代码数据)。 例如,调查对象被询问他们的饮食和每周体育活动、HIV/AIDS状况、可能的吸烟情况、免疫接种、健康状况、健康日数-与健康相关的生活质量、医疗保健获取...

R语言用逻辑回归预测BRFSS中风数据、方差分析anova、ROC曲线AUC、可视化探索
文章 2024-04-29 来自:开发者社区

R语言组lasso改进逻辑回归变量选择分析高血压、易感因素、2型糖尿病和LDL可视化

全文链接:https://tecdat.cn/?p=33015 本文用逻辑回归和lasso算法医学上的疾病的相关因素,帮助客户确定哪种模型可用于某种疾病的相关因素分析。3个模型:Logistic模型、成组Lasso Logistic模型、由组Lasso选出协变量的Logistic模型,有3个易感因素、高血压、2型糖尿病和LDL,得出误差率和变量数目的图(点击文末“阅读原文”获取...

R语言组lasso改进逻辑回归变量选择分析高血压、易感因素、2型糖尿病和LDL可视化
文章 2024-04-29 来自:开发者社区

R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证

全文链接:http://tecdat.cn/?p=32295 临床决策(clinical decision making)是医务人员在临床实践过程中,根据国内外医学科研的最新进展,不断提出新方案,与传统方案进行比较后,取其最优者付诸实施,从而提高疾病诊治水平的过程(点击文末“阅读原文”获取完整代码数据)。 在临床医疗实践中,许多事件的发生是随机的,对个体患者来...

R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证
文章 2024-04-26 来自:开发者社区

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(下)

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(上):https://developer.aliyun.com/article/1493901 AIC Akaike信息准则(AIC)是另一个模型选择的衡量标准。与似然比检验不同,AIC的计算不仅要考虑模型的拟合度,还要考虑模型的简单性。通过这种方式,AIC处理了模型的拟...

数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据(下)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。