文章 2024-05-06 来自:开发者社区

R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码

贝叶斯回归是一种统计方法,它使用贝叶斯定理来估计回归模型的参数。与传统的频率派回归方法不同,贝叶斯回归提供了参数的后验分布,而不仅仅是点估计。这意味着我们可以得到参数的不确定性度量,而不仅仅是单一的估计值(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
文章 2024-05-06 来自:开发者社区

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化

在统计建模过程中,经常会遇到空间自相关性的问题。空间自相关性是指相近位置的观测值往往比远离位置的观测值更相似。在尝试估计参数或进行预测时,空间自相关性可能会导致结果产生偏差(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
文章 2024-05-06 来自:开发者社区

R语言贝叶斯模型预测电影评分数据可视化分析

本文使用R语言帮助客户进行了贝叶斯模型预测电影评分,并对数据进行了可视化和分析(点击文末“阅读原文”获取完整代码数据)。 相关视频 文章创建了五个新的特征变量,包括电影类型、导演获奖情况、电影票房、评...

R语言贝叶斯模型预测电影评分数据可视化分析
文章 2024-04-26 来自:开发者社区

R语言用贝叶斯层次模型进行空间数据分析

阅读全文:http://tecdat.cn/?p=10932 《在本节中,我将重点介绍使用集成嵌套 拉普拉斯近似方法的贝叶斯推理。可以估计贝叶斯 层次模型的后边缘分布。鉴于模型类型非常广泛,我们将重点关注用于分析晶格数据的空间模型。 数据集:纽约州北部的白血病 为了说明如何与空间模型拟合,将使用纽约白血病数据集。该数据集记录了普查区纽约州北部...

R语言用贝叶斯层次模型进行空间数据分析
文章 2024-04-25 来自:开发者社区

R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra

原文链接:http://tecdat.cn/?p=19737 Stan是一种用于指定统计模型的概率编程语言。Stan通过马尔可夫链蒙特卡罗方法(例如No-U-Turn采样器,一种汉密尔顿蒙特卡洛采样的自适应形式)为连续变量模型提供了完整的贝叶斯推断。 可以通过R使用rstan 包来调用Stan,也可以 通过Python使用 pystan 包。这两个接口都支持基...

R语言RStan贝叶斯示例:重复试验模型和种群竞争模型Lotka Volterra
文章 2024-04-18 来自:开发者社区

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据

如果你正在进行统计分析:想要加一些先验信息,最终你想要的是预测。所以你决定使用贝叶斯。 但是,你没有共轭先验。你可能会花费很长时间编写 Metropolis-Hastings 代码,优化接受率和提议分布,或者你可以使用 RStan。 Hamiltonian Monte Carlo(HMC) HMC 是一种为 MH 算法生成提议分布的方法,该提议分布被接受的概率很高。具体算...

R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
文章 2024-04-17 来自:开发者社区

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

 原文链接:http://tecdat.cn/?p=24203 本教程使用R介绍了具有非信息先验的贝叶斯 GLM(广义线性模型)  。 当前教程特别关注贝叶斯逻辑回归在二元结果和计数/比例结果场景中的使用,以及模型评估的相应方法。使用教育数据示例。 此外,本教程简要演示了贝叶斯 GLM 模型的多层次扩展。 本教程遵循以下结构: 1.准备工作; ...

文章 2024-04-17 来自:开发者社区

R语言贝叶斯非参数模型:密度估计、非参数化随机效应META分析心肌梗死数据

原文链接:http://tecdat.cn/?p=23785  概述 最近,我们使用贝叶斯非参数(BNP)混合模型进行马尔科夫链蒙特卡洛(MCMC)推断。 在这篇文章中,我们通过展示如何使用具有不同内核的非参数混合模型进行密度估计。在后面的文章中,我们将采用参数化的广义线性混合模型,并展示如何切换到非参数化的随机效应表示,避免了正态分布的随机效应假设。 ...

R语言贝叶斯非参数模型:密度估计、非参数化随机效应META分析心肌梗死数据
文章 2024-04-17 来自:开发者社区

R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性

原文链接:http://tecdat.cn/?p=24334 1. 了解 Stan 像任何统计建模一样,贝叶斯建模可能需要为你的研究问题设计合适的模型,然后开发该模型,使其符合你的数据假设并运行。 统计模型可以在R或其他统计语言的各种包中进行拟合。但有时你在概念上可以设计的完美模型,在限制了你可以使用的分布和复杂性的软件包或程序中很难或不可能实现。这时你可能想转而使用统计...

文章 2024-04-17 来自:开发者社区

R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间

本文为读者提供了如何进行贝叶斯回归的基本教程。包括完成导入数据文件、探索汇总统计和回归分析。 在本文中,我们首先使用软件的默认先验设置。在第二步中,我们将应用用户指定的先验,对自己的数据使用贝叶斯。 准备工作 本教程要求: 已安装的JAGS 安装R软件。 假设检验的基本知识 相关性和回归的基本知识 贝叶斯推理的基...

R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。