文章 2024-04-29 来自:开发者社区

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告

全文链接:http://tecdat.cn/?p=32427 分析师:Xueyan Liu 在当前海量数据和资源的情况下,面对客户需求,如何找准需求标的和问题核心,并围绕该目标问题挖掘数据、确定市场重要关联因素、分层分类筛选可能关联因素,是当前数据分析运用的关键(点击文末“阅读原文”获取完整数据)。 解决方案 ...

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
文章 2024-04-29 来自:开发者社区

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列

全文链接:http://tecdat.cn/?p=32265 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求(点击文末“阅读原文”获取完整代码数据)。 但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值、 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在...

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
文章 2024-04-26 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(下)

使用R语言进行时间序列(arima,指数平滑)分析(上):https://developer.aliyun.com/article/1493892 这里1913-1920的预测绘制为蓝线,80%预测间隔绘制为橙色阴影区域,95%预测间隔绘制为黄色阴影区域。 对于每个时间点,“预测误差”被计算为观测值减去预测值。我们只能计算原始时间序列所涵盖的时间段的预测误差,即降雨数据...

使用R语言进行时间序列(arima,指数平滑)分析(下)
文章 2024-04-26 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(上)

原文链接:http://tecdat.cn/?p=3609  您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中(点击文末“阅读原文”获取完整代码数据)。 读时间序列数据 数据集如下所示: ...

使用R语言进行时间序列(arima,指数平滑)分析(上)
文章 2024-04-23 来自:开发者社区

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据

原文链接:http://tecdat.cn/?p=24492 介绍 此分析的目的是构建一个过程,以在给定时变波动性的情况下正确估计风险价值。风险价值被广泛用于衡量金融机构的市场风险。我们的时间序列数据包括 1258 天的股票收益。为了解释每日收益率方差的一小部分,我们使用 Box-J...

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据
文章 2024-04-22 来自:开发者社区

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-3

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2 https://developer.aliyun.com/article/1489390 VaR预测 该 ugarchroll 方法允许执行的模型/数据集组合的滚动估计和预测。它返回计算预测密度的任何所需度量所需的分布预测参数。我...

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-3
文章 2024-04-22 来自:开发者社区

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-1 https://developer.aliyun.com/article/1489389 GARCH 实现 尽管残差的 ACF 和 PACF 没有显着滞后,但残差的时间序列图显示出一些集群波动。重要的是要记住,ARIMA 是一种对...

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2
文章 2024-04-22 来自:开发者社区

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-1

原文链接:http://tecdat.cn/?p=24492 介绍 此分析的目的是构建一个过程,以在给定时变波动性的情况下正确估计风险价值。风险价值被广泛用于衡量金融机构的市场风险。我们的时间序列数据包括 1258 天的股票收益。为了解释每日收益率方差的一小部分,我们使用 Box-Jenkins 方法来拟合自回归综合移动平均 (ARIMA) 模型,并测试带下划线的假设。稍后,当我...

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-1
文章 2024-04-17 来自:开发者社区

灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标

灰色关联分析包括两个重要功能。 第一项功能:灰色关联度,与correlation系数相似,如果要评估某些单位,在使用此功能之前转置数据。第二个功能:灰色聚类,如层次聚类。 灰色关联度 灰色关联度有两种用法。该算法用于测量两个变量的相似性,就像\`cor\`一样。如果要评估某些单位,可以转置数据集。 *一种是检查两个变量的相关性,数据类型如下: | 参考| ...

灰色关联分析(Grey Relation Analysis,GRA)中国经济社会发展指标
文章 2024-04-17 来自:开发者社区

R语言结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析

原文链接:http://tecdat.cn/?p=24057 1.概要 本文的目标是使用各种预测模型预测Google的未来股价,然后分析各种模型。Google股票数据集是使用R中的Quantmod软件包从Yahoo Finance获得的。 2.简介 预测算法是一种试图根据过去和...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。