文章 2024-11-13 来自:开发者社区

用Python实现简单机器学习模型:以鸢尾花数据集为例

引言 在数据科学领域,机器学习无疑是最热门的话题之一。它允许我们从大量数据中提取有价值的洞察,并做出预测。Python,作为一门强大的编程语言,拥有众多用于机器学习的库,如Scikit-learn、TensorFlow和PyTorch等。本文将介绍如何使用Python和Scikit-learn库来实现一个简单的机器学习模型&#...

文章 2024-08-11 来自:开发者社区

【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】

一、设计要求 数据来源说明:数据集包含两个表格: mum_baby.csv(婴儿信息): user_id:用户ID(文本) birthday:出生日期(日期) gender:性别(文本,0: 男,1: 女) mum_baby_trade_history.csv...

【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
阿里云文档 2024-06-05

在ECS实例上使用EAIS推理PyTorch模型

您可以在ECS实例(非GPU实例)上绑定一个弹性加速计算实例EAIS(EAIS可以为ECS实例提供GPU资源),即可生成一款新规格的GPU实例。相比直接购买GPU实例,使用该方式可以为您灵活提供GPU资源并有效节省成本。如果您初次使用EAIS,可以通过本文内容体验在ECS实例上使用EAIS通过Python脚本推理PyTorch模型并获得性能加速的完整使用流程,帮助您快速上手EAIS。

文章 2024-04-22 来自:开发者社区

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集

原文链接:http://tecdat.cn/?p=24376 在这篇文章中,我们讨论了基于gensim 包来可视化主题模型 (LDA) 的输出和结果的技术 。 介绍 我们遵循结构化的工作流程,基于潜在狄利克雷分配 (LDA) 算法构建了一个主题模型。 在这篇文章中,我们将使用主题模型,探索多种策略以使用matplotlib 绘图有效地可视化结果 。 ...

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集
文章 2024-04-17 来自:开发者社区

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集2

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集1:https://developer.aliyun.com/article/1485101 每个话题的前N个关键词词云 虽然你已经...

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集2
文章 2024-04-17 来自:开发者社区

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集1

在这篇文章中,我们讨论了基于gensim 包来可视化主题模型 (LDA) 的输出和结果的技术 。 介绍 我们遵循结构化的工作流程,基于潜在狄利克雷分配 (LDA) 算法构建了一个主题模型。 在这篇文章中,我们将使用主题模型,探索多种策略以使用matplotlib 绘图有效地可视化结果 。 我将使用 20 个新闻组数据集的一部分,因为重点更多地放在可视化结果的方法上...

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集1
文章 2024-04-08 来自:开发者社区

【Python毕业设计】python基于CatBoost模型的混凝土强度预测研究(源码+数据集+毕业论文)【独一无二】

博__主:米码收割机 技__能:C++/Python语言 公众号:测试开发自动化【获取源码+商业合作】 荣__誉:阿里云博客专家博主、51CTO技术博主 专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。 ...

【Python毕业设计】python基于CatBoost模型的混凝土强度预测研究(源码+数据集+毕业论文)【独一无二】
阿里云文档 2024-02-27

使用PAI Python SDK训练和部署PyTorch模型

PAI Python SDK是PAI提供的Python SDK,提供了更易用的HighLevel API,支持用户在PAI完成模型的训练和部署。本文档介绍如何使用PAI Python SDK在PAI完成一个PyTorch模型的训练和部署。

文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~电信用户流失分类该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失1:数据初步分析 可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。....

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】使用决策树模型预测消费者未来消费行为实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一个预测未来消费行为的示例,即已经采集了过去消费行为的信息,并用来建立一个模型以对未来的消费行为进行预测。该示例简要演示了数据预处理、提取特征、选择模型、训练模型、评估模型、应用等阶段,供读者初步了解机器学习的应用流程。过去的消费行为信息包括消费者进店的年月日,性别(1男 0女)和是否消费(1消费 0没消费)共五项 部分数据如下 1:切分训练集....

【Python机器学习】使用决策树模型预测消费者未来消费行为实战(附源码和数据集 超详细)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像