决策树与随机森林算法在分类问题中的应用
在机器学习的广阔天地里,决策树与随机森林作为两种经典的监督学习算法,因其强大的解释性和预测能力,被广泛应用于分类任务中。本文将深入浅出地探讨这两种算法的工作原理,通过Python代码实例展示它们在实际问题中的应用,并探讨如何利用它们解决分类难题。 一、决策树基础 1.1 工作原理 决策树是一种树形结构的模型,通过...
共享单车需求量数据用CART决策树、随机森林以及XGBOOST算法登记分类及影响因素分析
全文链接:http://tecdat.cn/?p=28519 作者:Yiyi Hu 近年来,共享经济成为社会服务业内的一股重要力量。作为共享经济的一个代表性行业,共享单车快速发展,成为继地铁、公交之后的第三大公共出行方式。 但与此同时,它也面临着市场需求不平衡、车辆乱停乱放、车辆检修调度等问题。本项目则着眼于如何不影响市民出行效率的同时,对共享单车进行...
数据分享|R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
原文链接:http://tecdat.cn/?p=23061 数据集信息: 这个数据集(查看文末了解数据获取方式)可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。 目标: ...
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
原文链接:http://tecdat.cn/?p=23061 数据集信息: 这个数据集可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。 目标: 主要目的是...
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病-2
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病-1 https://developer.aliyun.com/article/1489347 执行机器学习算法 Logistic回归 首先,我们将数据集分为训练数据(75%)和测试数据(25%)。 ...
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病-1
原文链接:http://tecdat.cn/?p=23061 数据集信息: 这个数据集可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。 目标: 主要目的是预测给定的人是否有心脏病,借助于几个因素,如年龄、胆固醇水平、胸痛类型等。 我们在这个问题上使用的算法是: ...
决策树与随机森林算法
决策树的优劣势:处理容易,不需要对数据进行转化、预处理。但容易出现过拟合。 随机森林的优劣势:最广泛的使用算法之一,不需要对数据进行预处理,不需要对参数调节,可以并行处理。集成了决策树所有的优点并且弥补了决策树的不足。但是在处理超高维度数据集、稀疏数据集效果非常差 我们通过倒入数据库中下载好的数据来演示算法的过程,我们把数据导入然后做成训练集和数据集。 #导入numpy import nu...
分类树/装袋法/随机森林算法的R语言实现
原文首发于简书于[2018.06.12] 本文是我自己动手用R语言写的实现分类树的代码,以及在此基础上写的袋装法(bagging)和随机森林(random forest)的算法实现。全文的结构是: 分类树 基本知识 pred gini splitrule splitrule_best splitrule_random splitting buildTree predict 装袋法与...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。