文章 2024-04-26 来自:开发者社区

【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享

全文链接:http://tecdat.cn/?p=23184 在本文中,在训练深度神经网络时,在训练集和验证集上实现相同的性能通常很麻烦。验证集上相当高的误差是过度拟合的明显标志:神经网络在训练数据方面变得过于专业,我们将学习如何使用keras,用手写数字图像数据集(即MNIST)(查看文末了解数据获取方式)进行深度学习。 在本文中,我们提供了有关如何绕过此问题的综合指南。 ...

【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
文章 2023-01-11 来自:开发者社区

Pytorch 搭建卷积神经网络CNN和循环神经网络RNN在GPU上预测MNIST数据集

卷积神经网络CNNimport torch import torch.nn as nn from torch.autograd import Variable import matplotlib.pyplot as plt import torch.utils.data as Data import torchvision # 下载MNIST数据集 # 若已有该数据集,需改为DOWNLOAD_M....

Pytorch 搭建卷积神经网络CNN和循环神经网络RNN在GPU上预测MNIST数据集
文章 2023-01-09 来自:开发者社区

卷积神经网络CNN实现mnist手写数字识别

实验目的:初次尝试使用 tensorflow,构建卷积神经网络,通过训练集训练模型,在测试集上进行测试。注:tensorflow毕竟是个比较大的库,里面有很多对象、属性、方法等,我的考虑是需要用到什么再去学习怎么实现即可,这些库毕竟只是一个工具,重要的还是它本身的实现流程以及我们的思考。实验介绍:手写数字识别,从名字上来看它就是一个分类任务,我们需要处理大量的数据,使机器/模型能够更加准确地识别....

卷积神经网络CNN实现mnist手写数字识别

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。