R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
贝叶斯MCMC模拟是一个丰富的领域,涵盖了各种算法,共同目标是近似后验模型(点击文末“阅读原文”获取完整代码数据)。 相关视频 例如,使用的rstan包采用了一个Hamiltonian Monte C...
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(2)
看起来更好!搜索算法可以很好地找到参数空间的高似然部分! 现在,让我们看一下“ shape”参数的链 ############# # 评估MCMC样本的“轨迹图” ... ##### Shape 参数 plot(1:chain.length,guesses[,'sha ...
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(1)
全文链接:http://tecdat.cn/?p=17884 在许多情况下,我们没有足够的计算能力评估空间中所有n维像素的后验概率 。在这些情况下,我们倾向于利用称为Markov-Chain Monte Carlo 算法的程序 。此方法使用参数空间中的随机跳跃来(最终)确定后验分布(点击文末“阅读原文”获取完整代码数据)。 相关视频:马尔可夫链原理可视化解释与...
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(下)
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(上):https://developer.aliyun.com/article/1493702 更长的时间 ############ #更长的时间 chain.length <- 10...
R语言BUGS/JAGS贝叶斯分析: 马尔科夫链蒙特卡洛方法(MCMC)采样(上)
全文链接:http://tecdat.cn/?p=17884 在许多情况下,我们没有足够的计算能力评估空间中所有n维像素的后验概率 。在这些情况下,我们倾向于利用称为Markov-Chain Monte Carlo 算法的程序 。此方法使用参数空间中的随机跳跃来(最终)确定后验分布(点击文末“阅读原文”获取完整代码数据)。 相关视频:马尔可夫链原理可视化解释与...
R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间
原文链接:http://tecdat.cn/?p=26578 指数分布是泊松过程中事件之间时间的概率分布,因此它用于预测到下一个事件的等待时间,例如,您需要在公共汽车站等待的时间,直到下一班车到了。 在本文中,我们将使用指数分布,假设它的参数 λ ,即事件之间的平均时间,在某个时间点 k 发生了变化,即: ...
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
什么是频率学派? 在频率学派中,观察样本是随机的,而参数是固定的、未知的数量。 概率被解释为一个随机过程的许多观测的预期频率。 有一种想法是 "真实的",例如,在预测鱼的生活环境时,盐度和温度之间的相互作用有一个回归系数? 什么是贝叶斯学派? 在贝叶斯方法中,概率被解释为对信念的主观衡量。 所有的变量--因变量、参数和假设都是...
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
示例1:使用MCMC的指数分布采样 任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。所以我们从定义目标密度开始: target = function(x){ if(x<0){ return(0)...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。