MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳...

MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合
全文链接:http://tecdat.cn/?p=30426 对VaR计算方法的改进,以更好的度量开放式基金的风险。本项目把基金所持股票看成是一个投资组合,引入Copula来描述多只股票间的非线性相关性,构建多元GARCH-EVT-Copula模型来度量开放式基金的风险,并与其他VaR估计方法的预测结果进行比较(点击文末“阅读原文”获取完整代码数据)。 其次是...

Matlab正态分布、历史模拟法、加权移动平均线 EWMA估计风险价值VaR和回测标准普尔指数 S&P500时间序列
此示例说明如何使用三种方法估计风险价值 (VaR) 并执行 VaR 回测分析。这三种方法是: 正态分布 历史模拟 指数加权移动平均线 (EWMA) 风险价值是一种量化与投资组合相关的风险水平的统计方法。VaR 衡量指定时间范围内和给定置信水平的最大损失量。 回测衡量 VaR 计算的准确性。使用 VaR 方法,计算损失预测...

Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
描述 var对象指定了p阶平稳的多变量向量自回归模型(VAR(p))模型的函数形式并存储了参数值。 varm 对象的关键组成部分 包括时间序列的数量和多元自回归多项式 ( p )的阶数,因为它们完全指定了模型结构。其他模型组件包括将相同的外生预测变量与每个序列相关联的回归成分,以及常数和时间趋势项。 例子 创建和修改默认模型 创建一个由一个序列组成的零阶 ...

matlab使用Copula仿真优化市场风险数据VaR分析
使用Copula建模相关默认值 此示例探讨了如何使用多因素copula模型模拟相关的交易对手违约。 鉴于违约风险敞口,违约概率和违约信息损失,估计交易对手组合的潜在损失。一个creditDefaultCopula对象用于每个债务人的信用与潜在变量模型。潜在变量由一系列加权潜在信用因子以及每个债务人的特殊信用因子组成。潜在变量根据其默认概率映射到每个方案的债务...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
MATLAB var相关内容
MATLAB您可能感兴趣
DataWorks
DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。
+关注