通义灵码最佳使用实践参考__智能编码助手_AI编程
通义灵码是JetBrains或VSCode集成开发环境(IDE)中嵌入的一款智能开发助手工具,旨在通过人工智能技术简化软件开发过程,提升开发效率。本文将介绍在开发过程中如何深度体验多种辅助功能。其主要功能包括:通用大模型问答、生成单元测试、提供场景优化、编写说明文档,以及根据您的代码生成高质量AI驱动的代码等。这些功能为开发者提供了显著的便利与效率提升。
尽享红利,Serverless构建企业AI应用方案与实践
内容介绍: 一、Serverless技术价值 二、Serverless函数计算与AI的结合 三、Serverless函数计算AIGC应用方案 四、业务初期如何降低使用门槛(权益介绍) 本次课程的主题是“尽享红利,Serverless构建企业AI应用方案与实践”,由阿里云云原生架构师计缘分享。 ...
10分钟搭建一个拥有大模型能力以及专属知识库的钉钉机器人
在阿里云上,您只需 10 分钟,无需任何编码,即可为您的组织在钉钉平台上创建一个有大模型能力加成的 AI 机器人。这个机器人可以全天候(7x24)响应用户咨询,还能解答私域问题,成为您业务的专属机器人,提升用户体验,增强业务竞争力。
通义灵码单元测试实践__智能编码助手_AI编程
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
AI模型推理服务在Knative中最佳配置实践
Knative和AI结合提供了快速部署、高弹性和低成本的技术优势,适用于需要频繁调整计算资源的AI应用场景,例如模型推理等。您可以通过Knative Pod部署AI模型推理任务,配置自动扩缩容、灵活分配GPU资源等功能,提高AI推理服务能力和GPU资源利用率。
构建基于AI的个性化新闻推荐系统:技术探索与实践
引言: 随着信息时代的到来,新闻内容呈现爆炸式增长,用户如何在海量信息中快速找到自己感兴趣的内容成为了一个亟待解决的问题。个性化新闻推荐系统通过运用人工智能技术,能够为用户提供定制化的新闻内容,提高用户体验。本文将探讨如何构建一个基于AI的个性化新闻推荐系统,并介绍其中的关键技术。 一、系统概述 个性化新闻推荐系...
构建基于AI的语音合成系统:技术探索与实践
引言 随着人工智能(AI)技术的飞速发展,语音合成技术作为其中的重要分支,正在逐渐改变我们与机器的交互方式。语音合成系统能够将文本转换为自然流畅的语音,为用户提供更加便捷、直观的信息获取和交互体验。本文将介绍构建一个基于AI的语音合成系统的技术流程、关键技术以及实践挑战。 一、系统概述 基于AI的语音合成系统通常包括文本预处理...
构建未来:AI驱动的自适应网络安全防御系统提升软件测试效率:自动化与持续集成的实践之路
随着互联网的迅猛发展,网络攻击手段也在不断进化,传统的基于签名的安全机制已经难以跟上这种演变的步伐。为此,我们提出了一个基于AI的自适应网络安全防御系统,旨在通过利用人工智能的强大能力,为网络安全领域带来革命性的变化。 系统的核心技术之一是深度学习。通过训练神经网络模型,系统能够从海量的网络数据中学习到正常与异常...
构建高效AI模型:深度学习优化策略和实践
随着计算能力的飞速提升和大数据时代的到来,深度学习已经成为解决复杂问题的有力工具。然而,一个成功的AI模型不仅需要大量的数据和计算资源,更需要精心设计的优化策略来充分发挥其潜力。以下是我们探讨的几个关键优化领域。 首先是数据预处理的重要性。数据是深度学习模型的基石,高质量的数据集能够大幅提升模型性能。预处理包括数据清洗、标准化、归一化等步骤...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
AI更多实践相关
产品推荐
人工智能平台PAI
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。
+关注