【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
用例和补全流水线ASAP有3个组成部分:一个LLM,一个可用示例池(标记的输入-输出对,例如,带注释的代码),以及一个用于从代码中获取事实的静态分析工具。一个配置文件会指定这些组件。一旦配置完成后,开发人员对函数体Cin(如左图所示)调用ASAP ,并需要一个输出(例如,代码摘要)。 ...
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(上)
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。范晓萱同学分享了Improving Few-shot Prompts with Relevant Static Analysis Products《用相关静态分析产品改进少样本提示》论文:https://arxiv.org/pdf/2304.06815.pdf论文12页信息量比较大&...
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。李宾逊同学分享 Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation《你由 ChatGPT 生成的代码真的正确吗ÿ...
【网安AIGC专题10.19】论文3代码生成:ChatGPT+自协作代码生成+角色扮演(分析员、程序员、测试员)+消融实验、用于MBPP+HumanEval数据集
$stringUtil.substring( $!{XssContent1.description},200)...
【网安AIGC专题10.19】论文6(顶会ISSTA 2023):提出新Java漏洞自动修复数据集:数据集 VJBench+大语言模型、APR技术+代码转换方法+LLM和DL-APR模型的挑战与机会
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。ISSTA 2023How Effective Are Neural Networks for Fixing Security Vulnerabilities评测现有的大模型和基于深度学习的自动补丁修复模型对Java漏洞修复能力的工作论文很长很系统,学姐读的很细节很深入摘要安全漏洞修...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。