文章 2024-08-31 来自:开发者社区

深度学习入门:使用Python和TensorFlow构建你的第一个神经网络

欢迎来到深度学习的精彩世界!在这里,我们将一起揭开机器学习中最令人兴奋的领域之一的神秘面纱。如果你对人工智能抱有无限好奇,那么深度学习无疑是你不容错过的一课。今天,我们将用最基础的工具和方法,带你走进深度学习的大门。 首先,让我们简单了解一下什么是深度学习。你可以将它想象成一种特殊的计算机程序,它能...

文章 2024-06-30 来自:开发者社区

【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练

$stringUtil.substring( $!{XssContent1.description},200)...

【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
文章 2024-05-30 来自:开发者社区

中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

$stringUtil.substring( $!{XssContent1.description},200)...

中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
文章 2024-05-20 来自:开发者社区

食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

一、介绍 食物识别系统。该项目通过构建包含11种常见食物类别(包括'Bread', 'Dairy product', 'Dessert', 'Egg', 'Fried food', 'Meat', 'Noodles-Pasta', 'Rice', 'Seafood', 'Soup', 'Vegetable-Fruit')的图片数据集,并利用TensorFlow框架下的ResNet50神经网络...

食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
文章 2024-05-09 来自:开发者社区

Python深度学习基于Tensorflow(6)神经网络基础

万能近似定理(Universal Approximation theorem)是神经网络的重要理论,其说明了多层网络在足够多的神经元的情况下,是可以拟合任何函数的。Understanding the Universal Approximation Theorem – Towards AI 单层神经网络构造很简单: y ^ = f ( W X ) \hat{y}=f(WX) y^=f(WX...

Python深度学习基于Tensorflow(6)神经网络基础
文章 2024-04-30 来自:开发者社区

Python用线性回归和TensorFlow非线性概率神经网络不同激活函数分析可视化

全文链接:https://tecdat.cn/?p=33792 在这篇文章中,我将尝试介绍从简单的线性回归到使用神经网络构建非线性概率模型的步骤(点击文末“阅读原文”获取完整代码数据)。 这在模型噪声随着模型变量之一变化或为非线性的情况下特别有用,比如在存在异方差性的情况下。 当客户的数据是非线性时,这样会对线性回归解决方案提出一些问题: ...

Python用线性回归和TensorFlow非线性概率神经网络不同激活函数分析可视化
文章 2024-04-29 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化

原文链接:http://tecdat.cn/?p=23689  本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测(点击文末“阅读原文”获取完整代码数据)。 在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 ...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
文章 2024-04-23 来自:开发者社区

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性

原文链接:http://tecdat.cn/?p=26562 该项目包括: 自 2000 年 1 月以来的股票价格数据。我们使用的是 Microsoft 股票。 将时间序列数据转换为分类问题。 使用 TensorFlow 的 LSTM 模型 由 MSE 衡量的预测准确性 GPU 设置(如果可用) ...

Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性
文章 2024-04-22 来自:开发者社区

PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享

原文链接:http://tecdat.cn/?p=26230  什么是CNN 本文演示了如何训练一个简单的卷积神经网络 (CNN) 来对图像(查看文末了解数据获取方式)进行分类。 Convolutional Neural Networks (ConvNets 或 CNNs)是一类神经网络,已被证明在图像识别和分类等领域非常有效。与传统的多层感知器架构不同,它使用...

PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
文章 2024-04-17 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2

如果指数式移动平均数这么好,为什么还需要更好的模型? 拟合结果很好,遵循真实的分布(并且由非常低的MSE证明)。实际上,仅凭第二天的股票市场价格是没有意义的。就我个人而言,我想要的不是第二天的确切股市价格,而是未来30天的股市价格是上涨还是下跌。尝试这样做,你会发现EMA方法的缺陷。 现在尝试在窗口中进行预测(比如你预测未来2天的窗口,而不是仅仅预测未来一天)。然后你会意识到EM...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像