文章 2024-04-12 来自:开发者社区

AI人工智能 最常见的机器学习算法:线性回归、逻辑回归、决策树、随机森林、支持向量机、K近邻和神经网络

机器学习是人工智能(Artificial Intelligence,简称AI)的一个重要组成部分。它是一种通过数据和模型自动化推理、预测和决策的技术。在机器学习中,算法是核心。算法是计算机根据数据和任务要求自动推断出来的规则和方法。 本文将详细介绍AI人工智能最常见的机器学习算法。 线性回归 线性回归是最简单的机器学习算法之一。它用于预测一个连续的输出值。它的主要思想是根据输入变量(或...

AI人工智能 最常见的机器学习算法:线性回归、逻辑回归、决策树、随机森林、支持向量机、K近邻和神经网络
阿里云文档 2023-12-18

机器学习线性支持向量机算法组件的配置及示例

支持向量机SVM(Support Vector Machine)是基于统计学习理论的一种机器学习方法,通过寻求结构风险最小化,提高学习机泛化能力,从而实现经验风险和置信范围最小化。本文介绍线性支持向量机算法组件的配置方法及使用示例。

智能运维赛(复赛):利用数据和算法,快速定位系统异常并进行根因分析

1 课时 |
49 人已学 |
免费

智能创作赛(复赛):相册应用中的视频故事生成算法介绍

1 课时 |
27 人已学 |
免费

智能创作赛(初赛):相册应用中的故事生成算法介绍

1 课时 |
17 人已学 |
免费
开发者课程背景图
文章 2022-07-25 来自:开发者社区

ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)

目录基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、支持向量机(SVM_Linear、SVM_Rbf)、LDA线性判别分析算法进行二分类预测(决策边界可视化)设计思路输出结果核心代码  相关文章ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性...

ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
文章 2022-02-17 来自:开发者社区

ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)

设计思路输出结果w_target.shape:  (3,) [ 1.17881511 -5.13265596 -6.55556511]Pre_Logistic_function <class 'function'>Product_x_function [1.         0.10262954 0.43893794]data_x (3...

ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。