Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法
原文链接:http://tecdat.cn/?p=27267 我们将研究两种对分布进行抽样的方法:拒绝抽样和使用 Metropolis Hastings 算法的马尔可夫链蒙特卡洛方法 (MCMC)。像往常一样,我将提供直观的解释、理论和一些带有代码的示例。 背景 在...
MCMC、蒙特卡洛近似和Metropolis算法简介
MCMC 是Markov Chain Monte Carlo 的简称,但在传统模拟中有一个很重要的假设是样本是独立的(independent samples),这一点在贝叶斯统计尤其是高纬度的模型中很难做到。所以MCMC的目的就是运用蒙特卡洛模拟出一个马可链(Markov chain)。如今,概率建模风靡一时,但是当我第一次了解它时,总有一件事情困扰我。许多贝叶斯建模方法都需要计算积分,而我看到....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。