r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化(下)
r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化(上):https://developer.aliyun.com/article/1495331 交叉验证误差 cv(mod2, nfold = 10) ...
r语言有限正态混合模型EM算法的分层聚类、分类和密度估计及可视化(上)
原文链接:http://tecdat.cn/?p=23825 本文介绍了基于有限正态混合模型在r软件中的实现,用于基于模型的聚类、分类和密度估计(点击文末“阅读原文”获取完整代码数据)。 简介 提供了通过EM算法对具有各种协方差结构的正态混合模型进行参数估计的函数,...
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
Boosting算法是一种把若干个分类器整合为一个分类器的方法,也就是一种集成分类方法(Ensemble Method)。 计量经济学的视角 可以从计量经济学的角度理解提升方法(Boosting)的内容。 这里的目标是要解决: ...
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
Boosting算法是一种把若干个分类器整合为一个分类器的方法,也就是一种集成分类方法(Ensemble Method)。 计量经济学的视角 可以从计量经济学的角度理解提升方法(Boosting)的内容。 这里的目标是要解决: ...
什么是PS-SMART二分类训练算法组件
参数服务器PS(Parameter Server)致力于解决大规模的离线及在线训练任务,SMART(Scalable Multiple Additive Regression Tree)是GBDT(Gradient Boosting Decision Tree)基于PS实现的迭代算法。PS-SMART支持百亿样本及几十万特征的训练任务,可以在上千节点中运行。同时,PS-SMART支持多种数据格式及...
什么是GBDT二分类预测V2算法组件
GBDT二分类预测V2组件提供了针对GBDT二分类V2组件的预测功能,使用梯度提升决策树 (Gradient Boosting Decision Trees) 算法,对数据进行二分类问题的预测。本文介绍GBDT二分类预测V2组件的配置方法。
什么是视频分类训练算法组件_人工智能平台 PAI(PAI)
针对原始视频数据,您可以使用视频分类训练算法组件对其进行模型训练,从而获得用于推理的视频分类模型。本文介绍视频分类训练算法组件的配置方法及使用示例。
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
目录利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)设计思路输出结果核心代码 相关文章DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分....
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
目录基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、支持向量机(SVM_Linear、SVM_Rbf)、LDA线性判别分析算法进行二分类预测(决策边界可视化)设计思路输出结果核心代码 相关文章ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。