FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦! 微信公众号|搜一搜:蚝油菜花 快速阅读 功能:通过拖拽可视化组件,快速构建自定义 LLM 应用,支持多模型集成和记忆功能。 部署:支持本地、Docker 和云平台部署,操作简单,适合不同场景。 ...

LLM应用实战:当图谱问答(KBQA)集成大模型(三)
1. 背景 最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中... 本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客官可以翻翻之前的文章《LLM应用实战:当KBQA集成LLM》、《LLM应用实战:当KBQA集成LLM(二)》。 针对KBQA集成LLM项目,该系列文章主要是通过大模型来代替传...

LLM应用实战:当KBQA集成LLM(二)
1. 背景 又两周过去了,本qiang~依然奋斗在上周提到的项目KBQA集成LLM,感兴趣的可通过传送门查阅先前的文章《LLM应用实战:当KBQA集成LLM》。 本次又有什么更新呢?主要是针对上次提到的缺点进行优化改进。主要包含如下方面: 1. 数据落库 上次文章提到,KBQA服务会将图谱的概念、属性、实体、属性值全部加载到内存,所有的查询均在内存中进行,随之而来...

LLM应用实战:当KBQA集成LLM
1. 背景 应项目需求,本qiang~这两周全身心投入了进去。 项目是关于一个博物馆知识图谱,上层做KBQA应用。实现要求是将传统KBQA中的部分模块,如NLU、指代消解、实体对齐等任务,完全由LLM实现,本qiang~针对该任务还是灰常感兴趣的,遂开展了项目研发工作。 注意,此篇是纯纯的干货篇,除了源码没有提供外,整体核心组件均展示了出来。也是这两周工作的整体总结,欢迎...

MIT等首次深度研究集成LLM预测能力:可媲美人类群体准确率
在人工智能领域,大型语言模型(LLM)的预测能力一直是研究的热点。近期,由MIT、伦敦政治经济学院和宾夕法尼亚大学的研究人员共同开展的一项研究,首次深入探讨了集成多个LLM的预测能力,并与人类群体的预测准确性进行了比较。这项研究不仅验证了LLM在预测领域的潜力,也为未来的应用提供了新的思路。 研究团队通过构建一个由十二个不同LLM组成的“硅基群体”,并在一个为期三个月的预测比赛中,将这些模型的.....

OpenSearch LLM智能问答系统集成的时候,只能我们自己先拆分文档?
OpenSearch LLM智能问答系统集成的时候,只能我们自己先拆分文档?
为集成LLM到测试平台提供更便捷的方式:为讯飞的LLM星火创建接入LangChain类(全部源代码)
为集成LLM到测试平台提供更便捷的方式:为讯飞的LLM星火创建接入LangChain类(全部源代码)LangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言...
LLM-Client一个轻量级的LLM集成工具
所以这时候LangChain就解决了这个问题,LLM集成工具为将不同的语言模型集成到您的项目中提供了一种简化的方法。抽象了与每个LLM相关的复杂性和细微差别。使用LangChain,可以节省宝贵的时间和精力。 我这里又发现了一个刚刚发布不久的集成工具LLM-Client就出现了,本文将深入研究LLM -client和LangChain的特性、优势和注意事项。 LLM-Client和Lan...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。