文章 2024-08-04 来自:开发者社区

【Tensorflow+Keras】学习率指数、分段、逆时间、多项式衰减及自定义学习率衰减的完整实例

1 引言 Keras提供了四种衰减策略分别是ExponentialDecay(指数衰减)、 PiecewiseConstantDecay(分段常数衰减) 、 PolynomialDecay(多项式衰减)和InverseTimeDecay(逆时间衰减)。只要在Optimizer中指定衰减策略,一行代码就能实现,在以下方法一中详细介绍。 如果想要自定义学习率的衰减...

文章 2024-04-29 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化

原文链接:http://tecdat.cn/?p=23689  本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测(点击文末“阅读原文”获取完整代码数据)。 在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 ...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
文章 2024-04-17 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2

如果指数式移动平均数这么好,为什么还需要更好的模型? 拟合结果很好,遵循真实的分布(并且由非常低的MSE证明)。实际上,仅凭第二天的股票市场价格是没有意义的。就我个人而言,我想要的不是第二天的确切股市价格,而是未来30天的股市价格是上涨还是下跌。尝试这样做,你会发现EMA方法的缺陷。 现在尝试在窗口中进行预测(比如你预测未来2天的窗口,而不是仅仅预测未来一天)。然后你会意识到EM...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化2
文章 2024-04-17 来自:开发者社区

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化1

本文探索Python中的长短期记忆(LSTM)网络,以及如何使用它们来进行股市预测。 在本文中,你将看到如何使用一个被称为长短时记忆的时间序列模型。LSTM模型很强大,特别是在保留长期记忆方面。在本文中,你将解决以下主题。 理解为什么你需要能够预测股票价格的变动。 下载数据 - 使用从雅虎财经收集的股市数据 分割训练-测试数据,并进行数据归一化 ...

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化1
文章 2022-11-22 来自:开发者社区

TensorFlow 神经网络优化:指数衰减学习率、滑动平均、正则化

1. 指数衰减学习率tf.train.exponential_decay先使用较大的学习率快速得到一个较优解,然后随着迭代逐步减小学习率,使模型在训练后期更加稳定。global_step = tf.Variable(0,trainable=False) learning_rate = tf.train.exponential_decay(le...

TensorFlow 神经网络优化:指数衰减学习率、滑动平均、正则化

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

人工智能

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

+关注