文章 2024-04-27 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(下)

使用R语言进行时间序列(arima,指数平滑)分析(上):https://developer.aliyun.com/article/1493892 这里1913-1920的预测绘制为蓝线,80%预测间隔绘制为橙色阴影区域,95%预测间隔绘制为黄色阴影区域。 对于每个时间点,“预测误差”被计算为观测值减去预测值。我们只能计算原始时间序列所涵盖的时间段的预测误差,即降雨数据...

使用R语言进行时间序列(arima,指数平滑)分析(下)
文章 2024-04-27 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(上)

原文链接:http://tecdat.cn/?p=3609  您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中(点击文末“阅读原文”获取完整代码数据)。 读时间序列数据 数据集如下所示: ...

使用R语言进行时间序列(arima,指数平滑)分析(上)

大数据之R语言速成与实战

30 课时 |
18141 人已学 |
免费
开发者课程背景图
文章 2024-04-16 来自:开发者社区

R语言时间序列数据指数平滑法分析交互式动态可视化

R语言提供了丰富的功能,可用于绘制R中的时间序列数据。   包括: 自动绘制  xts  时间序列对象(或任何可转换为xts的对象)的图。 高度可配置的轴和系列显示(包括可选的第二个Y轴)。 丰富的交互式功能,包括  缩放/平移  和系列/点  高亮显示。 ...

R语言时间序列数据指数平滑法分析交互式动态可视化
文章 2022-02-16 来自:开发者社区

R语言与数据分析之九:时间内序列--HoltWinters指数平滑法

今天继续就指数平滑法中最复杂的一种时间序列:有增长或者减少趋势而且存在季节性波动的时间序列的预測算法即Holt-Winters和大家分享。这样的序列能够被分解为水平趋势部分、季节波动部分,因此这两个因素应该在算法中有相应的參数来控制。 Holt-Winters算法中提供了alpha、beta和gamma 来分别相应当前点的水平、趋势部分和季节部分。參数的去执法范围都是0-1之间,而且參数接近0时....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。