文章 2024-04-27 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(下)

使用R语言进行时间序列(arima,指数平滑)分析(上):https://developer.aliyun.com/article/1493892 这里1913-1920的预测绘制为蓝线,80%预测间隔绘制为橙色阴影区域,95%预测间隔绘制为黄色阴影区域。 对于每个时间点,“预测误差”被计算为观测值减去预测值。我们只能计算原始时间序列所涵盖的时间段的预测误差,即降雨数据...

使用R语言进行时间序列(arima,指数平滑)分析(下)
文章 2024-04-27 来自:开发者社区

使用R语言进行时间序列(arima,指数平滑)分析(上)

原文链接:http://tecdat.cn/?p=3609  您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中(点击文末“阅读原文”获取完整代码数据)。 读时间序列数据 数据集如下所示: ...

使用R语言进行时间序列(arima,指数平滑)分析(上)

大数据之R语言速成与实战

30 课时 |
18145 人已学 |
免费
开发者课程背景图
文章 2024-04-26 来自:开发者社区

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法

全文链接:http://tecdat.cn/?p=30131 最近我们被客户要求撰写关于上海空气质量指数的研究报告。本文向大家介绍R语言对上海PM2.5等空气质量数据(查看文末了解数据免费获取方式)间的相关分析和预测分析,主要内容包括其使用实例,具有一定的参考价值,需要的朋友可以参考一下(点击文末“阅读原文”获取完整代码数据)。 ...

数据分享|R语言分析上海空气质量指数数据:kmean聚类、层次聚类、时间序列分析:arima模型、指数平滑法
文章 2024-04-17 来自:开发者社区

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。然后,在样本中估计模型,并使用一些误差指标来评估其预测性能。 如果这样的程序只做一次,那么这被称为 "固定原点 "评估。然而,时间序列可能包含离群值,一个差的模型可能比更合适的模型表现得更好。为了加强对模型的评估,我们使用了一种叫做 "滚动原点 "...

R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
文章 2024-04-17 来自:开发者社区

R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用

最近,我们继续对时间序列建模进行探索,研究时间序列模型的自回归和条件异方差族。我们想了解自回归移动平均值(ARIMA)和广义自回归条件异方差(GARCH)模型。它们在量化金融文献中经常被引用。 接下来是我对这些模型的理解,基于拟合模型的预测的一般拟合程序和简单交易策略的摘要。   这些时间序列分析模型是什么?   拟合ARIMA和GAR...

R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用
文章 2024-04-16 来自:开发者社区

R语言时间序列和ARIMA模型预测拖拉机销售的制造案例研究

本文是我们通过时间序列和ARIMA模型预测拖拉机销售的制造案例研究示例的延续。您可以在以下链接中找到以前的部分: 第1部分 :时间序列建模和预测简介 第2部分:在预测之前将时间序列分解为解密模式和趋势 第3部分:ARIMA预测模型简介 ARIMA模型 - 制造案例研究示例 回到我们的制造案例研究示例,准备好开始分析,以预测未来3年的拖拉...

R语言时间序列和ARIMA模型预测拖拉机销售的制造案例研究

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。