文章 2024-04-26 来自:开发者社区

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

全文链接:http://tecdat.cn/?p=19664  MCMC是从复杂概率模型中采样的通用技术。 蒙特卡洛 马尔可夫链 Metropolis-Hastings算法(点击文末“阅读原文”获取完整代码数据)。 问题 如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的...

R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计
文章 2024-04-17 来自:开发者社区

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

如果您可以写出模型的似然函数,则 Metropolis-Hastings算法可以负责其余部分(即MCMC )。我写了r代码来简化对任意模型的后验分布的估计。具体如下: 1)定义模型(即概率先验)。在此示例中,让我们构建一个简单的线性回归模型(对数)。 a<-pars[...

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
文章 2024-04-16 来自:开发者社区

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

在最近的一篇文章中,我描述了一个Metropolis-in-Gibbs采样器,用于估计贝叶斯逻辑回归模型的参数。   这篇文章就此问题进行了研究,以展示Rcpp如何帮助克服这一瓶颈。  TLDR:只需用C ++编写log-posterior而不是矢量化R函数,我们就可以大大减少运行时间。 我模拟了与上一篇文章类似的模型中的数据: ...

R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。