文章 2024-03-28 来自:开发者社区

【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南

a. 数据拆分,模型不拆分 b. 数据不拆分,模型拆分 c. 数据拆分,模型拆分 在深度学习的炼丹之路上,多GPU的使用如同助燃剂,能够极大地加速模型的训练和测试。根据不同的GPU数量和内存配置,我们可以选择多种策略来充分利用这些资源。今天,我们将围绕“多GPU炼丹”这一主题,深度解析PyTorch多GPU并行训练的技巧,并为大家带来实战代码指南。在这个过程中,我们将不断探讨和展示如何...

【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)

1 GaitSet_DataLoader.pyimport numpy as np # 引入基础库 import os import torch.utils.data as tordata from PIL import Image from tqdm import tqdm import random # 1.1定义函数,加载文件夹的文件名称 # load_data函数, 分为3个步...

【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像