文章 2024-03-28 来自:开发者社区

【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南

a. 数据拆分,模型不拆分 b. 数据不拆分,模型拆分 c. 数据拆分,模型拆分 在深度学习的炼丹之路上,多GPU的使用如同助燃剂,能够极大地加速模型的训练和测试。根据不同的GPU数量和内存配置,我们可以选择多种策略来充分利用这些资源。今天,我们将围绕“多GPU炼丹”这一主题,深度解析PyTorch多GPU并行训练的技巧,并为大家带来实战代码指南。在这个过程中,我们将不断探讨和展示如何...

【多GPU炼丹-绝对有用】PyTorch多GPU并行训练:深度解析与实战代码指南
文章 2023-08-05 来自:开发者社区

PyTorch并行与分布式(三)DataParallel原理、源码解析、举例实战

简要概览  pytorch官方提供的数据并行类为:torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0) • 1  当给定model时,主要实现功能是将input数据依据batch的这个维度,将数据划分到指定的设备上。其他的对象(objects)复制到每个设备上。在前向传播的过程中,module被复制到每....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像