文章 2024-04-30 来自:开发者社区

【Python机器学习专栏】循环神经网络(RNN)与LSTM详解

在机器学习和深度学习的领域中,处理序列数据是一个重要的问题。这类数据常见于文本分析、语音识别、自然语言处理以及时间序列分析等场景。循环神经网络(RNN)及其变种,如长短期记忆网络(LSTM),就是为了解决这类问题而设计的。本文将详细解析RNN和LSTM的基本原理、结构及其在Python中的应用。 一...

文章 2024-04-30 来自:开发者社区

【Python机器学习专栏】卷积神经网络(CNN)的原理与应用

在深度学习的众多架构中,卷积神经网络(Convolutional Neural Networks, CNN)因其在图像识别、视频分析和自然语言处理等领域的卓越表现而广受关注。CNN能够有效地处理具有空间关系的数据,如图像中的像素和时间序列数据。本文将探讨CNN的基本原理、结构组成以及如何利用Python实现一个简单的CNN模型。 CNN的基...

文章 2024-04-30 来自:开发者社区

【Python 机器学习专栏】Python 深度学习入门:神经网络基础

在当今的科技领域,深度学习已经成为了最热门的研究方向之一。而 Python 作为一种强大且灵活的编程语言,在深度学习中扮演着重要的角色。本文将带大家一起探索 Python 深度学习中的神经网络基础。 一、神经网络的概念 神经网络是一种模仿人类大脑神经元连接方式的计算模型。它由大量的节点(神经元)相互连接而成,通过对输入数据的处...

文章 2024-04-17 来自:开发者社区

Python中用PyTorch机器学习神经网络分类预测银行客户流失模型

分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。在本文中,鉴于银行客户的某些特征,我们将预测客户在6个月后是否可能离开银行。客户离开组织的现象也称为客户流失。因此,我们的任务是根据各种客户特征预测客户流失。 ...

Python中用PyTorch机器学习神经网络分类预测银行客户流失模型
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~电信用户流失分类该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失1:数据初步分析 可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。....

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~超参数调优超参数调优需要依靠试验的方法,以及人的经验。对算法本身的理解越深入,对实现算法的过程了解越详细,积累了越多的调优经验,就越能够快速准确地找到最合适的超参数试验的方法,就是设置了一系列超参数之后,用训练集来训练并用验证集来检验,多次重复以上过程,取效果最好的超参数。训练数据的划分可以采用保持法,也可以采用K-折交叉验证法。超参数调优的试....

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~典型神经网络在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产斗起到了促进的作用,如VGG ResNet Inception DenseNet等等,很多实际使用的卷积神经网络都是在它们的基础上进行改进的,下面主要讨论VGG卷积神经网络VGG-16是共16层的卷积神经网络,有大约1.38亿个网络参数网络结构图....

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)

卷积神经网络卷积神经网络(convolutional neural network, CNN)在提出之初被成功应用于手写字符图像识别,2012年的AlexNet网络在图像分类任务中取得成功,此后,卷积神经网络发展迅速,现在已经被广泛应用于图形、图像、语音识别等领域。图片的像素数往往非常大,如果用多层全连接网络来处理,则参数数量将大到难以有效训练的地步。受猫脑研究的启发,卷积神经网络在多层全连接网....

【Python机器学习】卷积神经网络卷积层、池化层、Flatten层、批标准化层的讲解(图文解释)
文章 2023-12-20 来自:开发者社区

【Python机器学习】神经网络中常用激活函数、损失函数、优化方法(图文解释 附源码)

下面以经典的分类任务:MNIST手写数字识别,采用全连接层神经网络MNIST数据集是一个手写体的数字图片集,它包含有训练集和测试集,由250个人手写的数字构成。训练集包含60000个样本,测试集包含10000个样本。每个样本包括一张图片和一个标签。每张图片由28×28个像素点构成,每个像素点用1个灰度值表示。标签是与图片对应的0到9的数字。随着训练损失值逐渐降低 精确度上升 部分代码如下imp.....

【Python机器学习】神经网络中常用激活函数、损失函数、优化方法(图文解释 附源码)
文章 2023-12-20 来自:开发者社区

【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)

需要全部代码请点赞关注收藏后评论留言私信~~~误差反向传播学习算法用神经网络来完成机器学习任务,先要设计好网络结构S,然后用训练样本去学习网络中的连接系数和阈值系数,即网络参数S,最后才能用来对测试样本进行预测。在研究早期,没有适合多层神经网络的有效的参数学习方法是长期困扰该领域研究者的关键问题,以致于人们对人工神经网络的前途产生了怀疑,导致该领域的研究进入了低谷期。直到1986年,以Rumel....

【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像