阿里云文档 2024-09-10

DataV-Note Python分析

Notebook目前支持Python语言的代码编写和运行。通过Python,您可以根据您的分析思路编写代码,打印运行结果、绘制图表和绘制表格。本文介绍分析单元中的Python分析功能。

文章 2024-04-30 来自:开发者社区

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

全文链接:https://tecdat.cn/?p=33885 本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样(点击文末“阅读原文”获取完整代码数据)。 定义模型以及从条件后验中抽取样本的函数的代码也在Python脚本中提供。 ...

Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享
文章 2024-04-23 来自:开发者社区

PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

原文链接:http://tecdat.cn/?p=22617 本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果。它应用了Hamilton(1989)的滤波器和Kim(1994)的平滑器。 %matplotl...

PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(下)

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中):https://developer.aliyun.com/article/1490525 我们绘制模型残差。 SPY最佳模型残...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(下)
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中)

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上):https://developer.aliyun.com/article/1490523 AR(1) 模型,ALPHA = 0.6 正如预期的那样,我们模拟的 AR(1) 模型的分布是正常的。滞后值之间存...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中)
文章 2024-04-23 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上)

原文链接:http://tecdat.cn/?p=24092 前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,_并对_未来做出更好、更有利的预测。示例应用包括预测未来资产收...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上)
文章 2024-04-17 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列4

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列3;https://developer.aliyun.com/article/1485073 自回归条件异方差模型 - ARCH(p) ARCH(p) 模型可以简单地认为是应用于时间序列方差的 AR(p) 模型。另一种思考方式是,我们的时间序列 _在时间 t_的方差取决于对先前时期方差的过去观察。 ...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列4
文章 2024-04-17 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列3

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列2:https://developer.aliyun.com/article/1485071 移动平均模型 - MA(q) MA(q) 模型与 AR(p) 模型非常相似。不同之处在于 MA(q) 模型是过去白噪声误差项的线性组合,而不是像 AR(p) 模型这样的过去观察的线性组合。MA 模型的目的是我们可以通...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列3
文章 2024-04-17 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列2

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列1:https://developer.aliyun.com/article/1485068 随机行走的一阶差分 我们的定义成立,因为这看起来与白噪声过程完全一样。如果我们对 SPY 价格的一阶差分进行随机游走会怎么样? ...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列2
文章 2024-04-17 来自:开发者社区

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列1

前言 在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。 通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,_并对_未来做出更好、更有利的预测。示例应用包括预测未来资产收益、未来相关性/协方差和未来波动性。 在我们开始之前,让我们导入我们的 Python 库。 ...

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列1

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像