文章 2024-05-02 来自:开发者社区

机器学习算法原理与应用:深入探索与实战

一、引言 在当今的信息时代,机器学习(Machine Learning, ML)已经成为推动科技发展的重要引擎。从自动驾驶汽车到智能语音助手,从个性化推荐系统到金融风险控制,机器学习无处不在,它的应用已经深入到我们生活的方方面面。本文将深入探讨机器学习算法的原理,并结合实际应用案例,展...

文章 2023-12-20 来自:开发者社区

【Python机器学习】K-Means算法对人脸图像进行聚类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~K-Mean算法,即 K 均值算法,是一种常见的聚类算法。算法会将数据集分为 K 个簇,每个簇使用簇内所有样本均值来表示,将该均值称为“质心”。算法步骤K-Means容易受初始质心的影响;算法简单,容易实现;算法聚类时,容易产生空簇;算法可能收敛到局部最小值。通过聚类可以实现:发现不同用户群体,从而可以实现精准营销;对文档进行划分;社交网络中,....

【Python机器学习】K-Means算法对人脸图像进行聚类实战(附源码和数据集)

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
194 人已学 |
免费

PAI平台学习路线:机器学习入门到应用

52 课时 |
2434 人已学 |
免费

场景实践 - 机器学习PAI实现精细化营销

7 课时 |
197 人已学 |
免费
开发者课程背景图
文章 2023-12-20 来自:开发者社区

【Python机器学习】Mean Shift、Kmeans聚类算法在图像分割中实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~Mean Shift算法是根据样本点分布密度进行迭代的聚类算法,它可以发现在空间中聚集的样本簇。簇中心是样本点密度最大的地方。Mean Shift算法寻找一个簇的过程是先随机选择一个点作为初始簇中心,然后从该点开始,始终向密度大的方向持续迭代前进,直到到达密度最大的位置。然后在剩下的点里重复以上过程,找到所有簇中心。如何找到密度大的方向并前进多....

【Python机器学习】Mean Shift、Kmeans聚类算法在图像分割中实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】层次聚类AGNES、二分K-Means算法的讲解及实战演示(图文解释 附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~层次聚类在聚类算法中,有一类研究执行过程的算法,它们以其他聚类算法为基础,通过不同的运用方式试图达到提高效率,避免局部最优等目的,这类算法主要有网格聚类和层次聚类算法网格聚类算法强调的是分批统一处理以提高效率,具体的做法是将特征空间划分为若干个网格,网格内的所有样本看成一个单元进行处理,网格聚类算法要与划分聚类或密度聚类算法结合使用,网格聚类算....

【Python机器学习】层次聚类AGNES、二分K-Means算法的讲解及实战演示(图文解释 附源码)
文章 2023-12-20 来自:开发者社区

【Python机器学习】PCA降维算法讲解及二维、高维数据可视化降维实战(附源码 超详细)

需要全部代码请点赞关注收藏后评论区留言私信~~~维数灾难维数灾难是指在涉及到向量计算的问题中,当维数增加时,空间的体积增长得很快,使得可用的数据在空间中的分布变得稀疏,向量的计算量呈指数倍增长的一种现象。维数灾难涉及数值分析、抽样、组合、机器学习、数据挖掘和数据库等诸多领域。降维不仅可以减少样本的特征数量,还可以用来解决特征冗余(是指不同特征有高度相关性)等其他数据预处理问题。可视化并探索高维数....

【Python机器学习】PCA降维算法讲解及二维、高维数据可视化降维实战(附源码 超详细)
文章 2023-12-20 来自:开发者社区

【Python机器学习】聚类算法任务,评价指标SC、DBI、ZQ等系数详解和实战演示(附源码 图文解释)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、聚类任务设样本集S={x_1,x_2,…,x_m}包含m个未标记样本,样本x_i=(x_i^(1),x_i^(2),…,x_i^(n))是一个n维特征向量。聚类在分簇过程的任务是建立簇结构,即要将S划分为k(有的聚类算法将k作为需事先指定的超参数,有的聚类算法可自动确定k的值)个不相交的簇C_1,C_2,…,C_k,C_l∩C_l^′=∅且....

【Python机器学习】聚类算法任务,评价指标SC、DBI、ZQ等系数详解和实战演示(附源码 图文解释)
文章 2023-12-20 来自:开发者社区

【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~人们在面对大量未知事物时,往往会采取分而治之的策略,即先将事物按照相似性分成多个组,然后按组对事物进行处理。机器学习里的聚类就是用来完成对事物进行分组的任务一、样本处理聚类算法是对样本集按相似性进行分簇,因此,聚类算法能够运行的前提是要有样本集以及能对样本之间的相似性进行比较的方法。样本的相似性差异也称为样本距离,相似性比较称为距离度量。设样本....

【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)
文章 2023-05-17 来自:开发者社区

机器学习线性回归算法实战

2012每日单车共享数量预估1、 任务描述请在Capital Bikeshare (美国Washington, D.C.的一个共享单车公司)提供的自行车数据上进行回归分析。训练数据为2011年的数据,要求预测2012年每天的单车共享数量。原始数据集地址:http://archive.ics.uci.edu/ml/datasets/Bike&...

机器学习线性回归算法实战
文章 2023-02-15 来自:开发者社区

机器学习算法竞赛实战--3,数据探索

数据挖掘是竞赛的核心模块之一,贯彻竞赛始终也是很多竞赛胜利的关键那么数据探索又是什么呢?可以解决哪些问题?首先应该明确3点,即如何确保自己准备好竞赛使用的算法模型如何为数据集选择最合适的算法如何定义可用于算法模型的特征变量数据探索可以帮助回答以上这3点,并能够保证竞赛的最佳结果,它是一种总结,可视化...

机器学习算法竞赛实战--3,数据探索
文章 2023-02-15 来自:开发者社区

机器学习算法竞赛实战--2,问题建模

当参赛者拿到竞赛题目的时候,首先应该考虑的事情就是问题建模,同时完成基线模型的管道搭建,从而能够第一时间获得结果上的反馈帮助后续工作的进行,此外,竞赛的存在都依赖于真实的业务场景和复杂的数据参赛者通常对此会有很多想法,但是线上的提交结果验证的次数往往有限因此合理的切分训练集和验证集以及构建可信的线下验证就变得十分...

机器学习算法竞赛实战--2,问题建模

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

人工智能平台 PAI实战相关内容

产品推荐

阿里云机器学习平台PAI

阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。

+关注