文章 2024-08-02 来自:开发者社区

【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow

一、项目介绍 眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。 二、课题研究背景...

【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
文章 2023-03-30 来自:开发者社区

构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)

毋庸讳言,和传统架构(BS开发/CS开发)相比,人工智能技术确实有一定的基础门槛,它注定不是大众化,普适化的东西。但也不能否认,人工智能技术也具备像传统架构一样“套路化”的流程,也就是说,我们大可不必自己手动构建基于神经网络的机器学习系统,直接使用深度学习框架反而更加简单,深度学习可以帮助我们自动地从原始数据中提取特征,不需要手动选择和提取特征。 之前我们手动构建了一个小型的神经网络,解决了机.....

构建基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统(Python3.10/Tensorflow2.11)
文章 2022-12-02 来自:开发者社区

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法)——python代码

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法):混淆矩阵,精确率,召回率,特异度作为卷积神经网络的模型性能评价指标,它们的计算和绘制具有非常重要的意义,特别是在写论文的时候,我们往往需要这些指标来证明我们模型的优异性,这里给出相应的代码方便大家计算和绘制自己的混淆矩阵和计算各种指标。我这里是使用的网上开源的玉米病害数据集。下面给我的整个项目工程的数据集代码链....

深度学习之卷积神经网络中常用模型评估指标(混淆矩阵,精确率,召回率,特异度计算方法)——python代码
文章 2022-02-18 来自:开发者社区

深度学习神经网络第①篇——感知器及其Python实现

下图是一个感知器:可以看到,一个感知器有如下组成部分:01输入权值其中,每一个输入分量Xj(j=1,2…,r)通过一个权值分量wj,进行加权求和,并作为阈值函数的输人。偏差b的加入(对应上图中的w0,这样是便于书写和理解)使得网络多了一个可调参数,为使网络输出达到期望的目标矢量提供了方便。感知器特别适合解决简单的模式分类问题。02激活函数激活函数则有较多的选择,较为常见的有sigmoid函数和阶....

深度学习神经网络第①篇——感知器及其Python实现
文章 2021-12-17 来自:开发者社区

Coursera吴恩达《神经网络与深度学习》课程笔记(3)-- 神经网络基础之Python与向量化

上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost function表达式,并使用梯度下降算法来计算最小化Cost function时对应的参数w和b。通过计算图的方式来讲述了神经网络的正向传播和反向传播两个过程。本节课我们将来探讨Python和向量化的相关知识。上节课我们主要介绍了逻辑回归,以输出概率的形式来处理二分类问题。我们介绍了逻辑回归的Cost....

Coursera吴恩达《神经网络与深度学习》课程笔记(3)-- 神经网络基础之Python与向量化

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

Python学习站

Python学习资料大全,包含Python编程学习、实战案例分享、开发者必知词条等内容。

+关注
相关镜像