文章 2024-05-06 来自:开发者社区

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例

贝叶斯MCMC模拟是一个丰富的领域,涵盖了各种算法,共同目标是近似后验模型(点击文末“阅读原文”获取完整代码数据)。 相关视频 例如,使用的rstan包采用了一个Hamiltonian Monte C...

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
文章 2024-04-23 来自:开发者社区

R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间

原文链接:http://tecdat.cn/?p=26578  指数分布是泊松过程中事件之间时间的概率分布,因此它用于预测到下一个事件的等待时间,例如,您需要在公共汽车站等待的时间,直到下一班车到了。 在本文中,我们将使用指数分布,假设它的参数 λ ,即事件之间的平均时间,在某个时间点 k 发生了变化,即: ...

R语言贝叶斯METROPOLIS-HASTINGS GIBBS 吉布斯采样器估计变点指数分布分析泊松过程车站等待时间

大数据之R语言速成与实战

30 课时 |
18141 人已学 |
免费
开发者课程背景图
文章 2024-04-17 来自:开发者社区

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

示例1:使用MCMC的指数分布采样 任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。所以我们从定义目标密度开始: target = function(x){ if(x<0){ return(0)...

R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。