文章 2024-05-06 来自:开发者社区

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化

在统计建模过程中,经常会遇到空间自相关性的问题。空间自相关性是指相近位置的观测值往往比远离位置的观测值更相似。在尝试估计参数或进行预测时,空间自相关性可能会导致结果产生偏差(点击文末“阅读原文”获取完整代码数据)。 相关视频 ...

R语言贝叶斯INLA空间自相关、混合效应、季节空间模型、SPDE、时空分析野生动物数据可视化
文章 2024-04-17 来自:开发者社区

R语言状态空间模型和卡尔曼滤波预测酒精死亡人数时间序列

摘要 状态空间建模是一种高效、灵活的方法,用于对大量的时间序列和其他数据进行统计推断。本文介绍了状态空间建模,其观测值来自指数族,即高斯、泊松、二项、负二项和伽马分布。在介绍了高斯和非高斯状态空间模型的基本理论后,提供了一个泊松时间序列预测的说明性例子。最后,介绍了与拟合非高斯时间序列建模的其他方法的比较。 绪论 状态空间模型为几种类型的时间序列和其他数据的建模提供了一个...

R语言状态空间模型和卡尔曼滤波预测酒精死亡人数时间序列

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。