文章 2024-05-06 来自:开发者社区

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例

贝叶斯MCMC模拟是一个丰富的领域,涵盖了各种算法,共同目标是近似后验模型(点击文末“阅读原文”获取完整代码数据)。 相关视频 例如,使用的rstan包采用了一个Hamiltonian Monte C...

R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
文章 2024-04-24 来自:开发者社区

R语言coda贝叶斯MCMC Metropolis-Hastings采样链分析和收敛诊断可视化

原文链接:http://tecdat.cn/?p=27228  作为先决条件,我们将使用几行代码,在代码中,我们创建了一些测试数据,其中因变量 y 线性依赖于自变量 x(预测变量);定义线性模型拟合数据的可能性和先验;并实现一个简单的 Metropolis-Hastings MCMC 从该模型的后验分布中采样。 ...

R语言coda贝叶斯MCMC Metropolis-Hastings采样链分析和收敛诊断可视化

大数据之R语言速成与实战

30 课时 |
18144 人已学 |
免费
开发者课程背景图
文章 2024-04-17 来自:开发者社区

R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性

原文链接:http://tecdat.cn/?p=24334 1. 了解 Stan 像任何统计建模一样,贝叶斯建模可能需要为你的研究问题设计合适的模型,然后开发该模型,使其符合你的数据假设并运行。 统计模型可以在R或其他统计语言的各种包中进行拟合。但有时你在概念上可以设计的完美模型,在限制了你可以使用的分布和复杂性的软件包或程序中很难或不可能实现。这时你可能想转而使用统计...

文章 2024-04-17 来自:开发者社区

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断

本文将谈论Stan以及如何在R中使用rstan创建Stan模型。尽管Stan提供了使用其编程语言的文档和带有例子的用户指南,但对于初学者来说,这可能是很难理解的。 Stan Stan是一种用于指定统计模型的编程语言。它最常被用作贝叶斯分析的MCMC采样器。马尔科夫链蒙特卡洛(MCMC)是一种抽样方法,允许你在不知道分布的所有数学属性的情况下估计一个概率分布。它在贝叶斯推断中特别有...

R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
文章 2024-04-17 来自:开发者社区

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

如果您可以写出模型的似然函数,则 Metropolis-Hastings算法可以负责其余部分(即MCMC )。我写了r代码来简化对任意模型的后验分布的估计。具体如下: 1)定义模型(即概率先验)。在此示例中,让我们构建一个简单的线性回归模型(对数)。 a<-pars[...

R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。