文章 2025-06-05 来自:开发者社区

基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真

1.算法仿真效果matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要2.1 Q-learning理论 强化学习旨在解决智能体(在本文中为机器人)如何在环境中采取一系列行动,以最大化累积奖励的问题。其核心要素包括:...

基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
文章 2024-05-07 来自:开发者社区

m基于Q-Learning强化学习的迷宫路线规划策略matlab仿真

1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Q-Learning是一种无模型的强化学习算法,它能够使代理(Agent)在与环境互动的过程中学习最优策略,无需了解环境的完整动态模型。在迷宫路线规划问题中,Q-Learning被用来指导代理找到从起点到终点的最优路径,通过不断尝试和学习来优化其行为决策。 Q-Learning属于值函数方法,其核心思...

m基于Q-Learning强化学习的迷宫路线规划策略matlab仿真
文章 2023-03-16 来自:开发者社区

基于形态学处理算法的迷宫路线搜索matlab仿真

1.算法描述 形态学是图像处理中应用最为广泛的技术之一,主要用于从图像中提取对表达和描绘区域形状有意义的图像分量,使后续的识别工作能够抓住目标对象最为本质的形状特征,如边界和连通区域等。同时像细化、像素化和修剪毛刺等技术也常应用于图像的预处理和后处理中,成为图像增强技术的有力补充。形态学的基本思想是利用一种特殊的结构元来测量或提取输入图像中相应的形状或特征,以便进一步进行图像分析和目标识别。...

基于形态学处理算法的迷宫路线搜索matlab仿真

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

DataWorks

DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

+关注