文章 2024-04-17 来自:开发者社区

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据

特别是在经济学/计量经济学中,建模者不相信他们的模型能反映现实。比如:收益率曲线并不遵循三因素的Nelson-Siegel模型,股票与其相关因素之间的关系并不是线性的,波动率也不遵循Garch(1,1)过程,或者Garch(?,?)。我们只是试图为我们看到的现象找到一个合适的描述。 模型的发展往往不是由我们的理解决定的,而是由新的数据的到来决定的,这些数据并不适合现有的看法。有些人甚至可...

R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
文章 2024-04-17 来自:开发者社区

R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测

这篇文章描述了一种对涉及季节性和趋势成分的时间序列的异常点进行建模的方法。我们将对一种叫做STL的算法进行研究,STL是 "使用_LOESS_(局部加权回归)的季节-趋势分解 "的缩写,以及如何将其应用于异常检测。 其基本思想是,如果你有一个有规律的时间序列,你可以通过STL算法运行该序列,并分离出规律的模式。剩下的是 "不规则的",而异常检测相当于判定不规则性是否足够大。 例子...

R语言用LOESS(局部加权回归)季节趋势分解(STL)进行时间序列异常检测

大数据之R语言速成与实战

30 课时 |
18143 人已学 |
免费
开发者课程背景图
文章 2024-04-17 来自:开发者社区

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

链接 视频: 在Python和R语言中建立EWMA,ARIMA模型预测时间序列 概述 学习创建时间序列预测的步骤 关注Dickey-Fuller检验和ARIMA(自回归移动平均)模型 从理论上学习这些概念以及它们在python中的实现 介绍 时间序列(从现在起称为TS)被认为是数据科学领...

【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。