文章 2024-06-10 来自:开发者社区

m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真

1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Offset Min-Sum(OMS)译码算法是LDPC码的一种低复杂度迭代解码方法,它通过引入偏移量来减轻最小和算法中的量化效应,从而提高解码性能。当应用粒子群优化(PSO)来计算OMS译码算法中的最优偏移参数时,目标是自动找到能够最大化解码性能(如最小化误码率)的偏移量值。 PSO算法由粒子群、个体...

m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
文章 2024-06-09 来自:开发者社区

基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真

1.程序功能描述 VRPTW是车辆路径问题(VRP)的一个扩展,它在基本的车辆路径问题上增加了对客户服务时间窗的考虑,使得问题更加复杂且具有实际应用价值。在VRPTW问题中,有一组车辆从起点(通常是配送中心)出发,需要服务一组客户点,并最终返回起点。每个客户点都有一个服务时间窗,即最早服务时间和最晚服务时间。车辆必须在时间窗内到达客户点进行服务,并满足车辆的容量限制。目标是确定一组最优路径,使得....

基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
文章 2024-06-07 来自:开发者社区

m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真

1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 低密度奇偶校验码(Low-Density Parity-Check Code, LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。归一化最小和(Normalized Min-Sum, NMS)译码算法作为LDPC码的一种高效软译码方法,通过调整归一化因子来改善其性能。而基于遗传...

m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
文章 2024-06-07 来自:开发者社区

基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真

1.程序功能描述 车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。DVRP是一个经典的组合优化问题,在物流配送、运输调度等领域有广泛应用。它要求确定一组最优路径,使得一定数量的车辆从起点(通常是配送中心)出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。 ....

基于GA-PSO遗传粒子群混合优化算法的DVRP问题求解matlab仿真
文章 2024-06-06 来自:开发者社区

基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真

1.程序功能描述 车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,CDVRP是一个经典的组合优化问题,它要求确定一组最优路径,使得一定数量的车辆从起点出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。 2.测试软件版本以及运行结果展示MATLAB2.....

基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真
文章 2023-04-12 来自:开发者社区

基于PSO粒子群算法优化RBF网络的数据预测matlab仿真

1.算法描述 1985年,Powell提出了多变量插值的径向基函数(RBF)方法。径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也可以是到任意一点c的距离,c点称为中心点。任意满足上述特性的函数,都可以叫做径向基函数。一般使用欧氏距离计算距离中心点的距离(欧式径向基函数)。最常用的径向基函数是高斯核函数。RBF神经网络只有三层,即输入层、隐藏层、输出层。RBF网络的基本思想是:用RBF作.....

基于PSO粒子群算法优化RBF网络的数据预测matlab仿真
文章 2023-03-30 来自:开发者社区

一个基于matlab的标准PSO粒子群优化算法仿真

1.算法描述 在PSO中,群中的每个粒子表示为向量。在投资组合优化的背景下,这是一个权重向量,表示每个资产的分配资本。矢量转换为多维搜索空间中的位置。每个粒子也会记住它最好的历史位置。对于PSO的每次迭代,找到全局最优位置。这是群体中最好的最优位置。一旦找到全局最优位置,每个粒子都会更接近其局部最优位置和全局最优位置。当在多次迭代中执行时,该过程产生一个解决该问题的良好解决方案,因为粒子会聚在.....

一个基于matlab的标准PSO粒子群优化算法仿真
文章 2023-03-19 来自:开发者社区

基于matlab的CHPSO异质粒子群优化算法仿真

1.算法描述 粒子群优化算法(Particle Swarm Optimization,PSO)最初由Kenndy和Eberhart博士于1995年提出,是一种有效的随机全局优化技术,具有原理简单、参数少、收敛速度较快等特点,可用于求解大部分优化问题。在PSO中,群中的每个粒子表示为向量。在投资组合优化的背景下,这是一个权重向量,表示每个资产的分配资本。矢量转换为多维搜索空间中的位置。每个粒...

基于matlab的CHPSO异质粒子群优化算法仿真
文章 2023-02-24 来自:开发者社区

m基于改进PSO粒子群优化的RBF神经网络解耦控制算法matlab仿真

1.算法描述 智能控制的思想最早来自傅京孙教授[,他通过人机控制器和机器人方面的研究,首先把人工智能的自觉推理方法用于学习控制系统,将智能控制概括为自动控制和人工智能的结合。他认为低层次控制中用常规的基本控制器,而高层次的智能决策应该具有拟人化功能。J.M.Mendel教授进一步在空间飞行器的学习控制中应用了人工智能技术,并提出了人工智能的概念。1976年,Leondes和Mendel首次...

m基于改进PSO粒子群优化的RBF神经网络解耦控制算法matlab仿真
文章 2023-02-13 来自:开发者社区

m基于PSO粒子群算法的重采样算法仿真,对比随机重采样,多项式重采样,分层重采样,系统重采样,残差重采样,MSV重采样

1.算法描述 重采样的主要方法有随机重采样,多项式重采样,分层重采样,系统重采样,残差重采样,MSV重采样等。 a.随机采样是一种利用分层统计思想设计出来的,将空间均匀划分,粒子打点后会产生高集中的均匀分布区,将各分布区的粒子点进行权重累计并解算(例如求平均权重),生成若干个区间权重,使用该信息进行求解。其理解起来的几何思想就是给粒子点做索引编号,对应较多的索引编号将会保留,而较少的就会被淘...

m基于PSO粒子群算法的重采样算法仿真,对比随机重采样,多项式重采样,分层重采样,系统重采样,残差重采样,MSV重采样

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

智能搜索推荐

智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。

+关注