机器学习算法之——决策树模型(Decision Tree Model)
所属分类:机器学习摘要这一篇简单介绍一下使用决策树来进行分类任务, 同时我们会对决策树的结果进行可视化的显示. 这里会使用iris的例子进行分析.简介这一篇是对于决策树的介绍, 使用决策树来解决分类问题, 同时我们会将决策树的结果进行可视化, 来查看他的分类的过程.参考资料主要参考内容来自sklearn的官方教程: 1.10. Decision Trees这也是一个进行可视化的博客, 最后保存和....
Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)
Machine Learning | 机器学习简介Machine Learning | (1) Scikit-learn与特征工程Machine Learning | (2) sklearn数据集与机器学习组成Machine Learning | (3) Scikit-learn的分类器算法-k-近邻Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归Ma....
【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比较简单,而且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12...
【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。现在我们得到了每个特征值得信息熵增益,我们按照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。 (二叉树的图是用python的matplotlib库画出来的) 数据集: ...
分类算法之决策树(Decision tree)
3.1、摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法。这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断。在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree)。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。