文章 2024-07-13 来自:开发者社区

在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。`sklearn.preprocessing`模块提供了多种数据规范化的方法,其中`StandardScaler`和`MinMaxScaler`是最常用的两种。

1. 引言 在机器学习和数据科学中,数据预处理是一个至关重要的步骤。数据规范化(或称为特征缩放)是预处理的一种常见技术,它可以帮助我们改进模型的性能。sklearn.preprocessing模块提供了多种数据规范化的方法,其中StandardScaler和MinMaxScaler是最常用的两种。 StandardScaler...

阿里云文档 2024-05-23

在推荐系统中应用FeatureStore管理特征

本文以FeatureStore的特征表为例,为您介绍FeatureStore从创建与注册到最终上线的过程,帮助您了解如何从零开始搭建并上线一套完整的推荐系统。

高校精品课-复旦大学-机器学习与深度学习

1 课时 |
195 人已学 |
免费

PAI平台学习路线:机器学习入门到应用

52 课时 |
2439 人已学 |
免费

场景实践 - 机器学习PAI实现精细化营销

7 课时 |
197 人已学 |
免费
开发者课程背景图
阿里云文档 2024-02-27

什么是线性模型特征重要性算法组件

线性模型特征重要性组件用于计算线性模型的特征重要性,包括线性回归和二分类逻辑回归,支持稀疏和稠密数据格式。本文为您介绍该组件的配置方法。

阿里云文档 2024-01-10

使用pai designer分箱组件离散化连续特征

特征离散是将连续的数据进行分段,使其变为多个离散化区间。针对该场景,PAI推出了分箱组件和数据转换模块组件。首先使用分箱组件将连续特征离散化,再使用数据转换模块将原始数据从连续值转换为离散值。本文为您介绍如何使用Designer组件进行连续特征离散化。

阿里云文档 2024-01-05

使用特征工程提取特征数据

通过推荐算法定制生成的特征工程,对原始数据集(包括用户表、物料表和行为表等)进行处理,并生成新的特征表,以供后续的召回和排序使用。前提条件已开通PAI(Designer),并创建默认工作空间。具体操作,请参见开通PAI并创建默认工作空间。开通PAI并创建默认工作空间已为工作空间绑定MaxComput...

文章 2023-05-16 来自:开发者社区

机器学习 - 数据预处理中的 特征离散化 方法

可供参考的三种特征离散化方法在数据分析中,我们认为在某个范围内取值过于密集的特征认为是取值”连续“的特征。出于某些需求经常需要将这些”连续特征进行离散化“。本文介绍三种比较实用的数据离散化方法。李俊才的个人博客方法1:尺度缩小法这种方法是对于数值元素的一种简单粗暴的方法。离散化的目的不就是减少取值数目吗。那么好,只要把数据除以某个值,大数就...

机器学习 - 数据预处理中的 特征离散化 方法
文章 2022-02-17 来自:开发者社区

【ACE成长记第4期】美女程序员分享:机器学习之数据预处理到特征构建模型训练

本期由阿里云MVP&优秀ACE(阿里云开发者社群) 郭翔云 为大家分享机器学习之从数据预处理到特征构建谈天池工业AI竞赛模型训练。通过天池工业AI竞赛示例,演示从数据观察到特征构建,再到模型训练验证评估的一个机器学习的完整流程。 视频:https://yq.aliyun.com/live/597 分享分为三部分: 基于天池工业AI大赛-智能制造质量预测的赛题进行示例分析; 1.1赛...

阿里云文档 2020-10-21

什么是特征重要性过滤组件

特征重要性过滤组件为线性特征重要性、GBDT特征重要性和随机森林特征重要性等组件提供过滤功能,支持过滤TopN的特征。

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

人工智能平台 PAI特征相关内容

产品推荐

阿里云机器学习平台PAI

阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。

+关注