文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~电信用户流失分类该实例数据来自kaggle,它的每一条数据为一个用户的信息,共有21个有效字段,其中最后一个字段Churn标志该用户是否流失1:数据初步分析 可用pandas的read_csv()函数来读取数据,用DataFrame的head()、shape、info()、duplicated()、nunique()等来初步观察数据。....

【Python机器学习】决策树、逻辑回归、神经网络等模型对电信用户流失分类实战(附源码和数据集)
文章 2023-12-20 来自:开发者社区

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~超参数调优超参数调优需要依靠试验的方法,以及人的经验。对算法本身的理解越深入,对实现算法的过程了解越详细,积累了越多的调优经验,就越能够快速准确地找到最合适的超参数试验的方法,就是设置了一系列超参数之后,用训练集来训练并用验证集来检验,多次重复以上过程,取效果最好的超参数。训练数据的划分可以采用保持法,也可以采用K-折交叉验证法。超参数调优的试....

【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)

神经网络概览及算法详解

36 课时 |
1252 人已学 |
免费
开发者课程背景图
文章 2023-12-20 来自:开发者社区

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~典型神经网络在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产斗起到了促进的作用,如VGG ResNet Inception DenseNet等等,很多实际使用的卷积神经网络都是在它们的基础上进行改进的,下面主要讨论VGG卷积神经网络VGG-16是共16层的卷积神经网络,有大约1.38亿个网络参数网络结构图....

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)

需要源码请点赞关注收藏后评论区留言私信~~~一、目标检测的概念目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性的....

【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)
文章 2023-12-19 来自:开发者社区

PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言~~~一、文本情感分析简介文本情感分析是指利用自然语言处理和文本挖掘技术,对带有情感色彩的主观性文本进行分析,处理和抽取的过程。接下来主要实现情感分类,情感分类又称为情感倾向性分析,是指对给定的文本,识别其中主观性文本的倾向是肯定的还是否定的,或者说是正面的还是负面的,这是情感分析领域研究最多的内容。通常,网络中存在大量的主观性文本和客观性文本,客观性文....

PyTorch搭建LSTM神经网络实现文本情感分析实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、数据集简介我们将使用Cora数据集。该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论每篇论文都由一个1433维的词向量表示,所以,每个样本点具有1433个特征。词向量的每个元素都对应一个词,且该元素只有0或1两....

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
文章 2023-12-19 来自:开发者社区

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、实验数据准备我们使用的是MIT67数据集,这是一个标准的室内场景检测数据集,一个有67个室内场景,每类包括80张训练图片和20张测试图片 读者可通过以下网址下载但是数据集较大,下载花费时间较长,所以建议私信我发给你们数据集将下载的数据集解压,主要使用Image文件夹,这个文件夹一共包含6700张图片,还有它们标签的txt文件大体流程分为以下几步....

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。