文章 2022-12-28 来自:开发者社区

使用paddle搭建多种卷积神经网络实现Cifar10数据集 解析

卷积神经网络解析本项目把几大重要的卷积神经网络进行了解析使用了Cifar10项目是陆平老师的,解析采取了由上至下的方式,上面的解析详细,下面的可能没有标注如果有疑问可以留言或私聊我都可以。案例一:AlexNet网络AlexNet模型由Alex Krizhevsky、Ilya Sutskever和Geoffrey E. Hinton开发,是2012年ImageNet挑战赛冠军模型。相比于LeNet....

使用paddle搭建多种卷积神经网络实现Cifar10数据集 解析
文章 2022-12-01 来自:开发者社区

手撕Desenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

论文链接:https://arxiv.org/pdf/1608.06993.pdf没法下载论文的看我下面的百度云链接,在里面有论文Desenet(Densely Connected Convolutional Networks),翻译过来就是密集连接的卷积神经网络。Desenet网络是相较于Resnet更为先进的网络,简单来说两者的区别就是,Resnet网络是将前2层,或者前3层之前卷积层获取的....

手撕Desenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。
文章 2022-11-30 来自:开发者社区

手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

Googlenet是2014年被提出来的一种全新的神经网络结构,我个人认为他跟Resnet一样都是具有划时代意义的神经网络,当然他的意义不仅在于获得该年 ImageNet 竞赛中 Classification Task(分类任务)第一名,而是他跟Resnet一样都代表一种网络结构的改变,Resnet提出来残差网络结构,Googlenet提出了多尺度融合的网络结构,这种结构非常有意义。在目标检测领....

手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。
文章 2022-11-30 来自:开发者社区

手撕Resnet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

Resnet(Deep residual network, ResNet),深度残差神经网络,卷积神经网络历史在具有划时代意义的神经网络。与Alexnet和VGG不同的是,网络结构上就有很大的改变,在大家为了提升卷积神经网络的性能在不断提升网络深度的时候,大家发现随着网络深度的提升,网络的效果变得越来越差,甚至出现了网络的退化问题,80层的网络比30层的效果还差,深度网络存在的梯度消失和爆炸问题....

手撕Resnet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。
文章 2022-11-29 来自:开发者社区

手撕VGG卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

VGG”代表了牛津大学的Oxford Visual Geometry Group,VGG的Classification模型从原理上并没有与传统的CNN模型有太大不同。大家所用的Pipeline也都是:训练时候:各种数据Augmentation(剪裁,不同大小,调亮度,饱和度,对比度,偏色),剪裁送入CNN模型,Softmax,Backprop。测试时候:尽量把测试数据又各种Augmenting(....

手撕VGG卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。
文章 2022-07-25 来自:开发者社区

DL之DCGAN(Keras框架):基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成(保存h5模型→加载模型)

目录基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成设计思路输出结果核心代码相关文章DL之DCGAN(Keras框架):基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成(保存h5模型→加载模型)DL之DCGAN(Keras框架):基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成(保存h5模型→加....

DL之DCGAN(Keras框架):基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成(保存h5模型→加载模型)
文章 2022-06-29 来自:开发者社区

机器学习之卷积神经网络使用cifar10数据集和alexnet网络模型训练分类模型

使用cifar10数据集和alexnet网络模型训练分类模型下载cifar10数据集代码:import torchvision import torch transform = torchvision.transforms.Compose( [torchvision.transforms.ToTensor(), torchvision.transforms.Resize(224...

机器学习之卷积神经网络使用cifar10数据集和alexnet网络模型训练分类模型
文章 2022-02-17 来自:开发者社区

DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成

设计思路输出结果X像素取值范围是[-1.0, 1.0]_________________________________________________________________Layer (type)                 Output Shape       &...

DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成
文章 2022-02-17 来自:开发者社区

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

输出结果1.10.0Size of:- Training-set:  55000- Validation-set: 5000- Test-set:  10000Epoch 1/1  128/55000 [..............................] - ETA: 15:39 - loss: 2.3021 - acc: 0.0703  25....

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
文章 2022-02-17 来自:开发者社区

TensorFlow 卷积神经网络手写数字识别数据集介绍

欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of hand...

TensorFlow 卷积神经网络手写数字识别数据集介绍

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

产品推荐

域名解析DNS

关注DNS行业趋势、技术、标准、产品和最佳实践,连接国内外相关技术社群信息,追踪业内DNS产品动态,加强信息共享,欢迎大家关注、推荐和投稿。

+关注