如何快速上手WordCount MapReduce作业
本文以开发WordCount MapReduce作业为例,为您介绍如何通过MaxCompute Studio编写MapReduce程序及生成JAR包,并在MaxCompute客户端上运行MapReduce作业。
【集群模式】执行MapReduce程序-wordcount
因为是在hadoop集群下通过jar包的方式运行我们自己写的wordcount案例,所以需要传递的是 HDFS中的文件路径,所以我们需要修改上一节【本地模式】中 WordCountRunner类 的代码://5.设置统计文件输入的路径,将命令行的第一个参数作为输入文件的路径 FileInputFormat.setInputPaths(job,new Path(args[0]));...

【本地模式】第一个Mapreduce程序-wordcount
【本地模式】:也就是在windows环境下通过hadoop-client相关jar包进行开发的,我们只需要通过本地自己写好MapReduce程序即可在本地运行。一个Maprduce程序主要包括三部分:Mapper类、Reducer类、执行类。map阶段:将每一行单词提取出来转为map(key,1)的形式 key为每一行的偏移量:第1行偏移量为0、第二行在第一行最后一个字符的下标基础上+1(包括回....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
mapreduce您可能感兴趣
- mapreduce自定义
- mapreduce groupingcomparator
- mapreduce分组
- mapreduce pagerank
- mapreduce应用
- mapreduce算法
- mapreduce shuffle
- mapreduce区别
- mapreduce大规模
- mapreduce数据
- mapreduce hadoop
- mapreduce集群
- mapreduce spark
- mapreduce编程
- mapreduce报错
- mapreduce hdfs
- mapreduce作业
- mapreduce任务
- mapreduce maxcompute
- mapreduce配置
- mapreduce运行
- mapreduce yarn
- mapreduce程序
- mapreduce hive
- mapreduce文件
- mapreduce oss
- mapreduce节点
- mapreduce版本
- mapreduce优化
- mapreduce模式