Spark(Python) 从内存中建立 RDD 的例子
Spark(Python) 从内存中建立 RDD 的例子: myData = ["Alice","Carlos","Frank","Barbara"] myRdd = sc.parallelize(myData) myRdd.take(2) ---- In [52]: myData = ["Alice","Carlos","Frank","Barbara"] In [53]: myRdd = s....
Apache Spark 内存管理详解
Apache Spark 内存管理详解 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优。本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark .....
Apache Spark 内存管理详解
Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色。理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优。本文旨在梳理出 Spark 内存管理的脉络,抛砖引玉,引出读者对这个话题的深入探讨。本文中阐述的原理基于 Spark 2.1 版本,阅读本文需要读者有一定的 Spark 和 Java 基础,了解 RDD、Shuf....
颠覆大数据分析之Spark VS分布式共享内存系统
Spark可以看作是一个分布式共享集合系统,和Stumm和Zhou (1990)以及Nitzber和Lo (1991)所提到的传统的分布式共享内存(DSM)系统则略有不同。DSM系统允许单独读写内存,而Spark只允许进行粗粒度的RDD转换。尽管这限制了能够使用Spark的应用种类,但它对于实现高效的容错性却很有帮助。DSM系统可能会需要检查点相互协作来完成容错,比如说使用Boukerche等人....

Spark会把数据都载入到内存么?
前言 很多初学者其实对Spark的编程模式还是RDD这个概念理解不到位,就会产生一些误解。 比如,很多时候我们常常以为一个文件是会被完整读入到内存,然后做各种变换,这很可能是受两个概念的误导: RDD的定义,RDD是一个分布式的不可变数据集合 Spark 是一个内存处理引擎 如果你没有主动对RDDCache/Persist,它不过是一个概念上存在的虚拟数据集,你实际上是看不到这个...
Spark Tungsten in-heap / off-heap 内存管理机制
前言 发现目前还没有这方面的文章,而自己也对这块比较好奇,所以就有了这篇内容。 分析方式基本是自下而上,也就是我们分析的线路会从最基础内存申请到上层的使用。我们假设你对sun.misc.Unsafe 的API有一些最基本的了解。 in-heap 和 off-heap (MemoryAllocator) 首先我们看看 Tungsten 的 MemoryAllocator off-heap...
Spark Sort Based Shuffle内存分析
前言 借用和董神的一段对话说下背景: shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文件数目仍随任务数线性增加,仍难以应对大作业,但hash shu....
Spark Streaming 数据产生与导入相关的内存分析
前言 我这篇文章会分几个点来描述Spark Streaming 的Receiver在内存方面的表现。 一个大致的数据接受流程 一些存储结构的介绍 哪些点可能导致内存问题,以及相关的配置参数 另外,有位大牛写了Spark Streaming 源码解析系列,我觉得写的不错,这里也推荐下。 我在部门尽力推荐使用Spark Streaming做数据处理,目前已经应用在日志处理,机器学习等领...
Spark On YARN内存分配
本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有深入研究Spark的源代码,所以只能根据日志去看相关的源代码,从而了解“为什么会这样,为什么会那样”。 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式、yarn-cluster模式。 当在YARN上运行Spark作业,每个Spark exe...
spark executor容器内存如何规划?
spark executor内存分为3部分,执行内存/缓存内存/程序内存,如何合理的分配服务器内存给这3个部分?为什么?
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。